Geometrie pratique,
composée par le noble Philosophe
maître Charles de Bouelles, & nouvellement par luy revuee, augmente,
& grandement enrichie.

Carolus D'Orleans

Sola

Hanc aciem

Temporis

Retvndit

A PARIS.

De l'imprimerie de Regnaud Chaudiere,
& Claude son filz.

M. D. XLVII.
Au lecteur.

A mi lecteur qui cherchez les mesures,
Et quantitez des lignes & figures,
Et de tous corps par art de Geometrie,
Et plusieurs points & secrets d'industrie
Qui en cest art sont trouuez plus notables,
Et pour les gens d'espirit profitables,
Qui leur secouir redigent en effet:
Avoir te faut ce livre, qui fut fait
Dedens Noyon par Charles de Bouelles,
Qui n'est jamais sans faire oeuvres nouvelles.
Entens le donc, & si n'oublie pas
L'esquier droict la reigle & le compas:
Car de ces trois despand l'art, & pratique,
Et le profit du secouir Geometrique.
Carolus Bouillus V. P.

DO. ANTONIO LEVFREDO,
Abbati Vrsicampi dignissimo, S.

confestim verbū ex eius ore pro omne, fidelis; dextra dedit. Nec promissa fecellit. Et quia vir ille ob insigne virtutis & literarum amorem, te haec tenus excoluit: cogitavi me numeratur quō illi dies meliores lapillo, si lus cubratiunculam, cuius inulgdē prouinciam tam vitro sibi vendicauit, tibi antesignana epistola nuncuparem. Dicatum igitur tibi vulgata lingua libellum, pro insueto nostrae officinae xenio, ne flocci habe. Ex cuius lectione, sìqui mysticus Matheos scientiae studiosi aliquantū proficiunt, mihū; fortē ob id gratias agent: etiam meminerint, se pari gratiarum congiario, erga egregiam tui Orontij operā fore obnoxios eō; fœnore, illum ab ipsis iusta lance cópenari debere. Vt enim obreptitio disticho finiam,

Vias expressī, vīna ille bibenda propinat:
Toriculare implēui, guttura at ille rigat.
Vale. Nouioduni, Mensē Nouemb. M. D. XLII.

Rhythmus circularis, Orontianus.

Sr touts les arts qui sont dictis liberauls,
Servants a touts, tant doctes que rurauls:
Le principal après l'Arithmetique
Est le scuoir appelé Geometrique,
Pour peruenir a ceuls qui sont plus haults.

Touts artisians & gens Mercuriauls,
Qui ont desir trouver secrets noueauls,
De mesurer fault qu'aient la practique
Sur touts les arts.

Dieu a creé les corps, & animaux,
Depuis le ciel iusques aux minerauls,
Par nombre, poiss, & mesure harmonique.
Heureus est donc qui tel scuoir explique,
Et qui entend secrets si generauls,
Sur touts les arts,
Liure singulier & vulgo,

TOUCHANT L'ART ET PRATIQUE de Geometrie, Compose en Francois, par maistre Charles de Bouelles, Chanoine de Noyon: & nouvellement reuue & grandement augmenté par ledict aucteur.

Prologue de l'aucteur, touchant l'invention de l'art de Geometrie.

Art de Geometrie selon les anciennes histoires, fut iadis trouué en AEgypte, a cause de la riuiere du Nil. Le pais d'AEgypte estant meridional & fort chaud, est quasi tousjours serein & sans pluie. En lieu de pluie, pour la fertilité des champs, par la prouidence de Dieu, le Nil chacun an en temps d'este fe desfuiue, & arroue les champs, & quelque espace de tebs demeure sur les terres. Puis quand il se retire, les lisières & bornes des champs sont troubles & confundues, dont foudroient anciennement grandes noises & questions entre les AEgyptiens. Parquois pour offrir les controversies populaires, fut ordonné par les Rois d'AEgypte, que par les presttres lesquels estoient oisifs & sans paier tribut aux Rois, fut trouué quelque art de fi bien A.iii. mesu-
mesurer & borner les champs, que par le annuel des-
riuement du Nil, les champs ne fussent plus confun-
dus ne troublez. Après les préfètres d'AEgypte, plu-
fieurs autres gens scuauans & de grand engin, ont ad-
oufset é fort augumenté la science de Geometrie, çome
Pythagoras, Archimedes, Euclides, duquel le liure est
a present imprimé, & par tout divulgué. Et enco-
res tous les iours par le labeur & speculation de plu-
ieurs, ladiète science croist & enrichit. Car il n'y
ha science si perfaictë, que chacun iour par nouuel-
les inuentions ne se puisse bien augmenter, & mettre
a plus grande perfection.

**Comparaison de l'Arithmetique
a la Geometrie.**

A science & art de Geometrie, est en propor-
tion pareille & respondante & subalter-
ne a la noble science d'Arithmetique, & cô-
me dependante d'icelle. Entre les deux fœurs y ha pa-
reille difference, comme entre l'ame & le corps. l'A-
arithmetique est dediee aux nombres, lesquels sont
gisans & situez en l’ame. La Geometrie considere les
mesures,les quantitez & dimensions corporelles,les-
quelles sont posees & situees au corps, & en toute cho-
se solide & materielle. Parquoi l'Arithmetique en
excellence de dignité & de naturelle perfection, sur-
monte la Geometrie d'un haut degré : nonobstant
que les principes de l'une & de l'autre sont cômuns,
& ensemble correspondans:comme peuuent asses tel-
moigner
moigner ceuls, qui en toutes les deux sciences sont bien instruits. L'Arithmetique est coprinse sur quatre principes seulement : c'est à savoir sur vn, deux, trois, & quatre, lesquels conjoignent ensemble font le nombre de dix : lequel selon l'opinion de Pythagoras, & de tous philosophes, est fort mystique, & de grande perfection. Car aussi en luy par les quatre premiers nobres desdits, est fondée toute la science de Musique, & toutes les consonances & harmonies d'icelle. La Geometrie par l'imitation de l'Arithmetique est pareillement fondée & contenue sur quatre principes seulement, nommez en Latin, Pointum, Linea, Superficies, Corpus : C'est à dire le Point, la Ligne, la Plaine ou Superfice, & le Corps. Et n'a au tre chose à considérer & à coterpler que ces quatre, les quelles sont les mesures de toute chose ferme & solide, soit celeste, ou soit contenue sous le ciel. Et de ces quatre choses dirons ici particulierement : & commencerons par une table generale, & vitre à toute la Geometrie.

Sensuit la table generale de tout ce qui est traicté en la Geometrie.
La table générale & utile, a toute Géométrie.

Pointé, Ligne, Plaine, Corps.
 Dimension Longueur, Largeur, Profundité.
 Point Initiant, Mediant, Finissant, Ioignant, Secant, ou diuissant.
 Ligne Droïète, Oblique.
 Droïète Equidistante, Angulaire, Intersecante.
 Oblique Circunference, Petit arc, Grand arc.
 Angle Droïet, Agu, Obtus.

Plaine ou superficie Cercle, Figure angulaire.
 Cercle Demi cercle, La grande portion, La moindre.
 Figure angulaire Triangle, Quadrangle.
 Pentagone Hexagone, Heptagone, &c.
 Triangle Isopleure, Isoscele, Scalene, Orthogone,
 Oxygone, Amblygone. Quadrangle
 Regulier, Irregulier.
 Regulier- Regulier, Quarré,
 Longuet, Rhombe, Rhomboïde.

Pentagone Regulier,
 Irregulier, Uniforme,
 Egredient. Hexagone
 Regulier, Irregulier, Uniforme,
 Egredient. Et ainsi des autres figures qui sont innumerables.
 Corps Triangulaire,
 Tetragonique, Pentagonique.
 Triangulaire Tetradécodon,
 Octocédron, Icoïdecodon.
 Tetragonique Regulier,
 Irregulier, Regulier
 Cube. Pentagonique
 Dodecédron, &c.
Premier chap. de Geometrie.

Des principes & dimensions Geometriques : & de la figure circulaire, & parties d'icelle.

Chapitre premier.

Du Point.

Le point est semblable à l'unité en Arithmetique. Car comme Unité n'est pas nombre, mais est le commencement & principe de tous nôtres ; aussi le point est commencement de toute mesure, & de toute corporelle dimension, ne aiant en soy ne longueur, ne largeur, ne profundité.

De la Ligne.

A ligne est semblable & proportionnée au nombre de deux. Car a tout le moins deux points sont nécessaires, a produire & tirer une ligne de l'un insques a l'autre. Côme il appert par la ligne, AB. La ligne tiet vne seule dimension : car elle est seulement longue, sans largeur, & sans profundité.

De la Plaine, autrement dite Superfice.

A plaine autrement dite Superfice, semble par iusle proportion au nombre de trois : car pour le moins sont nécessaires trois points, pour clorre & fermer vne plaine. Au moindre champ de terre, quel qu'il soit, sault trois lissieres pour le fermer : côme il appert au triangle ABC. La plaine est longue, et large, sans profundité. Quand on mesure un champ de terre, on ne regarde que la longue & largeur dudit champ ; sans considerer aucune profundité. Car comme on dit en Latin : Cuius est solum, buius est caelum, &
Premier Chapitre,

ysque ad infernum. C'est a dire, Qui est possesseur d'un champ de terre, a luy est insques au ciel, & insques en enfer, ou insques au centre de la terre. Parquoi en la propriete d'un champ de terre, on ne mesure que longueur & largeur: & non le bault, ne le bas.

<Du Corps.>

Le corps se prend en Geometrie, non pour la substance du corps humain subie & servant a l'ame, mais pour toute mesure corporelle ainsie trois dimensions, c'est a savoir longueur, largeur, & profundite. Et ressemble le corps au nombre de quatre. Car pour le moins fault quatre pointes, pour clorre & constituer un corps. Comme il appert au corps triangulaire ou Pyramidal A B C D, ainsiel logueur, largeur, & haulteuer. Quand un maistre veult marchander de faire une muraille ou une tour, il doit considerer & mesurer combien on la veult de long, de large, & de profond. Et sur ce doit faire son marche: ou autrement seroit deceu.

<Des trois dimensions & mesures.>

La semblance & imitation de la tres haulte & tres saine &e trinite diuine, n'y a en toute scie ce de mathematique que trois mesures, & corporelles dimensions, longueur, largeur, & profundite. Le point, de ces trois dimensions est du tout except: la ligne est seulement longue: la plaine est longue, & large: & le corps comme le plus parfait de tous, est long, large & profund.

<Des differences du point.>

Le point (comme il appert en la table premise ci deuant) est en plusieurs differences. Car au commencement de la ligne, il est initiatif, au milieu moennant, & en la fin termi-
De Geometrie.

nant & finissant: comme sont ces points A B C, de la ligne A C. Au chef d'un angle, il est joingnant deux lignes coécurrentes au bout de l'angle: comme est le point E, de l'angle A B C. En l'intersection de deux lignes, il est entrecoupant & divisaire: comme le point E, par lequel les lignes A B & C D, sont divisées. Et quand il estch à milieu d'un cercle, où de toute figure regulière: on l'appelle le centre, & vrai milieu de la dite figure, soit ronde ou angulaire: comme le point A, du present cercle, ou pentagone B C D E F.

Des especes de la ligne.

A ligne a deux especes: car il y a ligne droite & ligne oblique. La ligne droite se produit d'un point à l'autre par l'aide du reiglet de bois, ou d'arain: comme est la ligne A B. Car sans matérielle instrument asséurant la main, a grande peine se produiroit. La ligne oblique, se produit par le moyen du compas, par lequel la main prend assurance, a faire le tour: comme est la ligne oblique C D E. Le reiglet & le compas sont les deux plus nécessaires instruments de la Geometrie, sans lesquels tous Geometriens ne scarioient faire, ne inventer, ou approuver grande chose. Le reiglet sert à toutes lignes droites, & aux figures angulaires: le compas est servant au cercle & à toutes figures circulaires & sphéricques.
Premier Chapitre,

De la ligne droite.

Ligne droite, comme il appert par la première table, est en triple difference. Car ou elle est equidistante à une autre ligne droite, comme sont les deux lignes AB & CD, lesquelles se on produisit d'un costé ou A—-----B d'autre, jamais ne feront angle, & ne vien c—-----d dont a vn point. Ou deux lignes droites sont non equidistantes, & angulaires: comme on voit par la presente figure, en laquelle les deux lignes AB & CD, sont angle actuel, ou produites continuellement viendront se rencontrer & creer angle. Ou deux lignes droites sont intersecantes en quelque maniere que ce soit, tant en angles droits, qu'en angles diuers. Et l'intersection desdites lignes n'est qu'un seul point moien entre les bouts & extremites d'icelles, comme il appert par la derniere figure.

De la ligne oblique.

Ligne oblique, n'a qu'une espece en soy: mais elle est en trois manieres. Car il y a la circunferéce qui est vn tour entier, comme A. Et la moindre portion, comme B. Et la plus grande, comme C. Et de ces trois portions parlerons ci apres, quand il sera mestier de declarer la difference des angles, lesquels on peut creer & constituer en icelles.

Des Angles.
Angle proprement est la concurrence de deux lignes soient pareilles ou diverses : iia soit que le plus souvent en Geometrie on ne fait mention que des angles provenant & créé par la concurrence, & conjonction des lignes droites : comme est l'angle ABC. Nonobstant se peut aussi faire angle, par la conjonction de deux lignes obliques, comme sont les lignes ABC, & DEF : & par la rencontre d'une ligne droite, comme ABC, & d'une ligne oblique, comme DBE.

De l'Angle droit.

Angle droit est le plus noble, & principal des angles : & se fait quand une ligne droite esthet & repose perpendiculairement sur une autre ligne droite, sans soy encliner ne a dextre ne a senestre. Comme est la ligne CD, chechant sur la ligne AB, & faisant deux angles droits ACD, & DCB. Et quand une ligne esthet sur l'autre obliquement : elle fait d'un costé vn angle obtus, plus grand que l'angle droit : & de l'autre costé vn angle aigu, moindre que l'angle droit, comme fait la ligne C E, chechant obliquement sur ladite ligne AB. Car l'angle BCE est obtus, plus grand que le droit : & l'angle ACE est aigu, moindre que le droit angle.

Comment se doibt produire & creer vn angle droit.
Premier Chapitre,

S'oit donnée une ligne droite A B, de quelque logueur que ce soit. Sur les deux points A et B, je produis deux cercles, lesquels s'entrecroiseront sur deux points C et D. Je tire la ligne D C, laquelle fera de costé & d'autre sur la ligne assignée deux angles droits.

Comment on doit faire deux lignes équidistantes l'une à l'autre.

Ais sur la ligne assignée comme sur A B, un angle droit, comme il est dit ci-devant, par la ligne B C. Puis sur la ligne B C fais encore un angle droit par la ligne C D. Je di que la ligne C D, sera équidistante a la premiere A B. Car je mienne ligne est perpendiculaire a deux lignes droites, il est de nécessité qu'elles soient ensemble équidistantes, & que jamais ne pourront approcher l'une de l'autre ne faire angle.

Diviser une ligne droite en tant de parties que l'on voudra.

Pour diviser une ligne droite en tant de parties égales que l'on voudra, Euclide ne les anciens Geométriens n'en ont fait aucune mention, la soi que la chose soit fort nécessaire, & assez facile a trouver. Soit la ligne assignée A B. Le la veul diviser en cinq parties, car il est plus difficile de diviser une ligne selon le nombre non-per, que selon le nombre per. Il est trop facile de la diviser en deux, par deux cercles soy entrecrossans sur elle. Puis est aussi
De Geometrie.

Du Cercle.

Le cercle est la plus belle & plus noble figure de toutes les autres superfrces: & est fort facile à le dcrire, par un simple tour du copas. Il y a premierement trois choses en un cercle: le centre, qui est le point du milieu, sur lequel repose le pied immobile du compas: la circumference, qui est le bord, & li- siere dudit cercle, par laquelle passe le pied mobile du compas: &
Premier Chapitre,

le diametre, qui est une ligne droite (comme A B C) passant par le centre du cercle, et le divisant esgallement en deux moities ou demis cercles.

Du Diametre.

Le diametre du cercle, est la plus grande ligne droite qu'on puisse tirer dedans le cercle, passant par le centre d'icelluy, et divisant ledit cercle en deux parties esgalles. Toutes les autres lignes divisant le cercle esgallement en la grandé, et moindre portion, ne passent point par le centre dudit cercle. Comme est la ligne B D, laquelle est moindre que le diametre A E C: et fait deux portions esgallles, la plus grande B A D, et la moindre B C D.

Du Semidiametre.

Par le semidiametre du cercle se peut toute la circonférence esgallement diviser en six parties, et le cercle pareillement. Et est facile a entendre par le tour du côpas. Par quoi est aussi fort facile de creer & decrire en tout cercle un triangle isopleure, et un hexagone regulier. Comme il appert par la presente figure A B C D E F.

De la Circunference.

On divise tout le diametre du cercle en sept parties esgallement, selon la mesure de chacune division, se pourra toute la circon-
circumference diviser en vingt & deux parties egales. Par quoi appert clere-
ment que la circumference du cercle est
moult plus que triple au diametre:ia soit
que la proportion soit du tout incertaine
& incognue. Car le nombre de vingt
& deux, est plus que triple au nombre
de sept. Et aussi tout arc, est plus long que sa corde, quelque pe-
tit qu'il soit.

19 Tout angle consistant sur le diametre du demi cer-
cle iusques a la circumference,est angle droit: & en la
plus grande portion,agu: & en la moindre,obtus.

C Onme sont les angles droits
ABC,ADC & AEC, sur le
diametre A C, & demi cercle A
BC. Mais tonts angles produits en plus
grande portion du cercle sont agus, &
moindres que l'angle droit. Comme est
l'angle F B H. Et les angles gisans en la
moindre portion du cercle, comme est l'an-
gle F G H, sont obtus, & plus grands que l'angle droit.

Pour trouver le centre,ou point perdu.

Es vulgaires & mechaniques appellent le point perdu,le
centre du cercle qui est commencement, & n'est point perfaict:
du quel cercle quand le centre par la faute du compas est
perdu, il le faut retrouver pour perfaire ledit cercle, car autrement
perfaire ne se saurait. Soit doncques proposee la portion de la cir-
cumference ABC, de laquelle le centre est perdu. Pour la perfaire

B. i. & retrou-
Premier Chapitre,

& retrouver le centre, ie produis en elle
deux lignes droictes tellement quellement
A B, & B C, lesquelles ie divise chascu-
ne par le milieu, & tire deux lignes a
droit aangles D E, & F G, joy rencontr-
trans & entrecoppans sur le pointet H.

Le di que pointet H est le pointet, & le
vrai etre qu'on demande, pour paracheuer ledict cercle imperfect.

Par trois pointets a l'aduention donnez & marquez 21
faire passer vne mesma circumference.

C

E semble quasi impossible, ou bien difficile a plusieurs:
mais il depend de ce qu'on a dit ci dessus, & se doit de-
clarer par vne mesme figure. Soiit a l'aduention de la poin-

tes du copas donnez trois pointets A, B,
C, on veut faire passer vn rod parmi les
trois pointets. Le produis entre lesdits
trois pointets deux lignes droicthes A B &
B C, lesquelles ie divise chascuene par
le milieu, & tire deux lignes comme dessus
est dict. Le pointet de la rencontre & in-
tersection desdites deux lignes, est le centre pour tirer le rond pas-
sant parmi les trois pointets assignez. Pose doncques le pied du cop-

pas immobile sur ledict centre, & l'autre pied sur le pointet A: puis
tourne le rond: tu trouveras ce que tu demandes. Il y a vne exce-
ption en ceste regle, c'est que si les trois pointets assignez & trouvez
esoir comprins en mesma ligne A B C

droicthe, comme sont les pointets A B C, on ne seaurait faire passer vne
circuference par chascune des trois. En tout autre cas faire on le peut:
puis que les trois pointets assignez, sont en forme angulaire.

Par
Par trois points quelconques, jamais ne peut passer que vne seule ligne oblique.

Ainsi que par deux points quelconques ne se peut tirer que vne seule ligne droite : aussi par trois points ne se peut passer fors vne seule ligne oblique. Car toutes lignes obliques & rôdes passans sur mesmes points, sont conjoinctes en vne mesme ligne.
Et si elles sont differentes, elles passeront par trois divers points : Comme font les rondes lignes A B C, A C D, A E C.

Au tour & à l'enuiron d'un mesma cercle, on peut descrire six cercles d'une mesma equalité, & non plus : lesquels seront ensemble deux a deux, & avec celluy du milieu ioingnans & attouchans en vn seul point,

Comme il appert en este presente figure, en laquelle le cercle A, du milieu, cotient autour de soy six cercles de pareille grandeur & qualité. Et n'y en peut plus avoir, p la qualité du cercle reglée & coprinse sur le nôbre de six.

Si vne ligne est perpendiculaire sur les bouts du diametre du cercle, elle ne peut copper ne entrer dedens ledict cercle : mais elle passera
Second Chapitre,
passera par dehors, & le touchera sur un seul point.

Comme il appert clarament en ceste figure: en laquelle sur les points extrêmes du diamètre A B, sont deux perpendiculaires, lesquelles produictes en logueur d'un costé & d'autre, ne peut cooper ou diuiser le cercle, & entrer dedens iceluy: ains le toucher têt seulement. Mais toutes les lignes estes perpendiculaires sur les bouts des lignes moindres que le diamètre: se on les prolonge de costé & d'autre, elles entreront dere dans le cercle, & le diuiseront. Comme il appert de la ligne C D, & des lignes perpendiculaires sur les points C & D.

Toutes lignes droiqtes touchans le cercle sur la moindre ligne que le diamètre, ne sont equidistantes: mais tendans & inclinées a faire angle.

Ceci appert en la presente figure, en laquelle sur la ligne A B, monstre que le diametre, deux lignes droiqtes touchent le cercle: parquoy ne sont equidistantes, mais du costé bas tendans a cocurrence, & inclinées a faire angle d'un costé.
Vne ligne droite ne peut toucher vn cercle sur deux pointés : mais sur vn seul.

Ce est assés evident par tout, & se peut facilement entendre par les figures ci deuant descriptes.

Si deux cercles touchent l’un l’autre, ce sera sur vn seul point : sur lequel vne même droite ligne les peut toucher tous deux.

Règarde la presente figure, & clereient entendras le propos. Car la ligne A B C, touche deux cercles sur vn meme point B : sur lequel pareillement lesdits cercles touchet l’un l’autre, sans soy diuiser aucunement, & sans copper la dicte ligne A B C.

Si deux cercles touchet l’un l’autre : la droite ligne passant par le centre des deux, passera par le point de l’attouchement, & sera perpendiculaire a la droite ligne touchant les deux cercles.

En la presente figure, la ligne droite A B C (comme dessus est dit) touche deux cercles sur le point B. Et la ligne D B E, passe par les centres desdits deux cercles. Parquoi ie di qu'elle passe par le point du common attouchement : c'est a dire, le point B, & qu'elle est perpendiculaire sur la ligne A B C, comme il appert a l'oeil.

Si vn
Premier Chapitre,

Si vn cercle estant dedens l'autre le touche en quelque point, il luy est eccentrique : aiant le centre divers, & la ligne droite passant par leurs centres, passera par le point du commun attouchement.

En cette figure on voit le petit cercle, estant dedens le grand, & le touchat sur le point A. Parquoy ie di qu'ils sont eccentriques, aians divers centres, comme B & C. Car B est le centre du petit, & C le centre du plus grand. Et la ligne droite A B C, passe par les deux cêtres, & aussi par le point A, sur lequel ils sont joinits & se touchent.

Si deux cercles sont diuisans l'un l'autre, la ligne droite passant par leurs cêtres sera perpendiculaire a la ligne passant par les points des deux intersections.

Cette figure le demontre. Car la ligne A B, passant par les intersecions A & B, est perpendiculaire a la ligne droite C D E F, passant par les deux centres D & E. Et est cette proposition vraie en tous cercles, tant es-gauls que ines-gauls, pourue que l'un diuise l'autre.

En la comparaison de deux cercles, quelle proportion y ha du diametre de l'un au diametre de l'autre: telle proportion y ha entre les circonférences.

Ceste
C'est proposition est belle, & fort utile en toute la Géométrie, & de facile intelligéce. En la présente figure le diamètre du petit cercle AB, est la moitié de la ligne ABC, estant diamètre du grand cercle. Le di doneques, que la circonférence du petit cercle a la circonférence du grand, est en pareille proportion: & que la circonférence du grand cercle, est double a toute la circonférence du petit. Et si le diamètre du grand cercle, estoit triple au diamètre du petit : aussi seroit la circonférence du grand triple a la circonférence du petit: & ainsi des autres.

L'aire & plane superficie d'un cercle, a l'aire & superficie de l'autre cercle, est en double proportion a la proportion des diamètres & des circonférences.

Comme si les diamètres & les circonférences sont en double proportion les uns aux autres: ie di que les aires & capacité des deux cercles seront en proportion quadruple. Et que le plus grand contiendra quatre fois autant que le plus petit. Car la proportion quadruple, est double a la double proportion. Et si les diamètres & circonférences sont en triple proportion: ie di que les aires & plattes formes des deux, seront
Premier Chapitre,

L'une à l'autre en nocuple proportion. Et contiendra le grand cercle neuf fois autant que le petit. Et ce se peut facilement coognisire à l'œil, tant par la precedente, que par la presente figure A B C. en laquelle le grand cercle est quadruple a chacun des petits, a cause que le diametre A B C, est double du diametre A B, ou B C.

En toute figure d'encyclie, quand plusieurs cercles sont les vns dedens les autres concentriques, & de pareille distance: la proportion des vns aux autres, est continuellement exprimée par nombres quarrez.

Encyclia en Latin, est quand plusieurs cercles sont les vns dedens les autres concentriques & de pareille distance: comme sont au monde les elements & les sieuls. Car toute la substance de l'universel monde est faite, & create de Dieu en belle forme d'encyclie: car les elements & les sieuls sont les vns dedens les autres concentriquement. Car le centre general de tout le monde, est le celeste de la terre. Le diocques que en cette presente encyclie, en laquelle les cercles sont de pareille distance & de pareille largeur, les cercles sont les vns aux autres en proportion exprimée par nombres quarrez: c'est adire, que le premier
mier qui est le plus petit & interieur est comme vn, le second comme quatre, le tiers comme neuf, le quart comme seize, le quint comme vingt & cinq. Et ainsî conséquemment des autres, qui est chose digne d'être contemplee & sceue. Chacun peut seauoir par arithmetique, que c'est d'un nombre quarré, lequel est produiçt d'un nombre multiplié par soymesme : comme est quatre, qui est produiçt par deux fois deux : & neuf produiçt de trois fois trois. Quatre fois quatre, font seize : & cinq fois cinq, font vingt & cinq. Et ainsî des autres.

Et quand l'encycyle des cercles estans l'un dedes l'autre seroit ec-centrique (comme il appert en la presente figure) pourue qu'ils soient en egalles distances: ce sera tout vn, & serôt toujours selon leur ordre en proportion des nombres quarrés; ce qui se peut facilement entendre par la proportion des diamètres & des circonférences: car les aires des cercles (comme il est dit ci deuant) sont tousjours en double proportion, aux proportions des diamètres & des circonférences.

DE FIGURES ANGVLAIRES,

Chapitre deuxiesme.

Du Triangle en general.

Le trian-
Second Chapitre,

De l’isopleure.

Isopleure est le principal et plus régulier de tous triangles, ainsi trois angles et trois côtés égaux. Parce que tout isopleure est oxygone, aient les trois angles agus comme est le triangle A B C.

La description de l’isopleure.

Pour décrire un vrai isopleure sur toute ligne droite assignée, comme sur A B, fais sur les points A & B deux demi cercles selon la quantité de la ligne A B, & ou ils s’entrecouperont comme sur le point C sera le chef de l’angle pour perfaire l’isopleure qu’on demande. Parce que tire les lignes A C & B C, & sera l’isopleure perfaict A B C.

Du centre de l’isopleure.

Le centre de l’isopleure est le point du milieu, équidistant des trois angles & des demi côtés; comme le point D, en l’isopleure A B C. Et comme on a dit du cercle, aussi se peut dire de l’isopleure, & de toute figure angulaire & réguliere; c’est a savoir qu’en quelle proportion est le diamètre de l’un au diamètre de l’autre, pareille proportion y ha de la circonferèce de l’un.
De Geometrie.

l'un a la circunference de l'autre. La circunference de l'isopleure & de tout triangle sont les trois lignes coprenans icelluy. Et le diametre est celluy, qui le partit en deux moities depuis l'un des angles insques au milieu du costé opposite, comme sont A D E, B D F, & C D G; lesquelles on appelle communique et les caths des triangle.

5 En l'encyclie des isopleures estans en pareille distance, la proportion des vns aux autres est selon les nombres quarrez.

En la vraie encyclie des isopleures, & de toutes figures regulieres, aduient comme en l'encyclie des cercles. Et y ha toute pareille proportion, comme entre les cercles, selon les nombres quarrez: comme il appert en ceste encyclie isopleurique: en laquelle l'intérieur, & plus petit triangle est comme vn, le second comme quatre, le tiers comme neuf, & le quatrieisme comme seize, &c.

6 Tout isopleure se peut esgalemment diuiser en petits isopleures, fors par les nombres quarrez.

Cette proposition depend de l'autre. Il di qu'un isopleure se peut departir en quatre petits, ou en neuf, ou en seize, ou en vingt & cinq, ou en trente & six isopleures: & non autrement: comme il appert en ceste isopleure, duquel les costez sont partis en quatre. Par quoi tout le grand isopleure est actulement diuise.
Second chapitre.

divise en seize isopleures. Si on divise les costez en trois, tout le grand isopleure sera depar-
ti en neuf, et ainsi des autres. Et pareillement peust on dire de l'augmentation d'un isopleu-
re de plus petit en plus grand: car ladite augmentation se fait selon les nombres quarrés pro-
duit et engendrez par la continuelle addition des nombres impropres: comme vn, trois, cinq, sept, neuf, &c.

Des triangles, Isosele, & Scalene.

Isosele & Scalene sont triangles irreguliers. Isosele ha deux costez esgauls, et le tiers plus grand ou plus petit que les deux: comme est le triangle ABC, desquel les deux costez AB, & BC, sont esgauls: mais le tiers AC plus petit. Et si on prolonge le costé BC, vn petit plus log que l'autre jusques au point D, en tirant la ligne AD, on sera vn triangle Scalene ABD, ayant les trois costez du tout esgauls. Et de ces deux espées de triangle, a cause de leur irregularité, les Geometriens ne font pas grand mention: par quoi n'en ferons qu'une proposition.

Tous triangles irreguliers de pareille hauteur, & de bases esgaulles, sont esgauls.

A base d'un triangle, est le bas costé opposite a l'angle su-
perieur. Quaé deux ou plusieurs triangles sont entre deux
lines equidistantes, ils sont de pareille hauteur: comme en par
De Geometria.

par la presente figure, en laquelle l'iso-
scele A B C, est egl al aux deux scalenes
laterals A E D, & C F G: pource qu'ils
sont tous trois d'une hauteur, & entre
lignes equidistantes D G, & E F, & de
bases egales, qui sont A C, A D, & C G. Et en tous triangles ge-
neralement estans d'une meisme hauteur, en quelle proportion sont
leurs bases, en telle & pareille sont les triangles les uns aux autres,
on doubles, ou triples, ou quadruples.

Du triangle orthogone.

L' triangle orthogone, est celluy qui ha vn angle droit &
ze peut jamais estre isopleure:
ne peut jamais estre isopleure ha trois angles
agus. Mais il peut estre isoscele & scalene.
Comme ici est figure par le triangle
orthogone & isoscele A B C: entant que
les deux costez A B & B C sont esgauls, & l'angle A B C est an-
gle droit. Mais le triangle A B D est orthogone & scalene, aiant
les trois costez aingesauns, comme il appert a la mesure.

Du triangle amblygone.

Amblygone est tout triagle aiant A
vn angle obtus, & plus grand
que l'angle droit: & peut
estre isoscele & scalene. Comme est le
triagle isoscele A B C, & scalene A B D:
defquels l'angle qui est sur le point A,
est obtus, & plus estendu que l'angle droit. Iamais vn triangle
ne peut avoir deux angles obtus, pour la cause d'une proposition
qui sensuit.

Tours
Second Chapitre.

Tous les angles de tous triangles, valent autant que deux angles droits, et non plus.

Du Quadrangle.

Le quadrangle est la figure suivante après le triangle, et est en deux especes : car il y ha par tout le regulier & irregulier. Le regulier est celluy qui garde sa vraie equalité : comme est le quarré, aiant quatre angles droits, & quatre costez esguels. Le irregulier est celluy, qui ha inegalité ou des costez, ou des angles, ou de tous ensemble, comme dirons aprés.

Du vrai Quarré.

L’angle
L’angle de l’isopleure a l’angle du vrai carré, est comme trois a deux.

Deux diamètres d’un vrai carré, se divisent sur le centre dudit carré en quatre angles droits.

Comme il appert au carré AB CD, auquel les deux diamètres se divisent sur le centre E en quatre angles droits. Parquoi aussi appert que toute espace superficiel estant copris enuiion vn point, cötient autant, & non plus, que quatre angles droits.

En tout
Second Chapitre,

En tout triangle orthogone aiant vn angle droit, le vrai quarré du costé opposite a l'angle droit, est esgal aux deux quarrées des autres deux costez.

Comme il est derooment apparent en ceste figure: en laquel y ha vn triangle orthogone A B C, duquel l'angle droit est A B C, & le costé A C est opposite audit angle droit. Parquoi ie di, que le quarré dudit costé A C, c'est asz:en avoir A D E C, est esgal & pareil aux deux quarrées A F G B, & C B H I comprins ensemble, & vault autant que les deux. Et ce facilement appert, par la resolution des dits trois quarrées en triangles, par leurs diametres. Ceste proposition comme l'on dit, fut trouvée par Pythagoras: qui en fut si joyeux, que pour l'invention d'elle il en sacrifia cent bœufs, & feit le sacrifice qu'on dit en Grec Hecatomeb.

Tout vrai quarré se peust resouldre en divers quarrées selon vn nombre quarré, & non autrement.

Il aduient ainsi des quarrées qu'auons dit des isopleures. desquels les divisions & augmentations se font selon les nombres quarrées comme en quatre, en neuf, en seize, & ainsi des autres. Le present quarré A B C D est resoult & divise en neuf petits quarrées. Qui veult, on le peust diviser en seize, ou en vingt & A cinq. Et pareillement augmenter de plus grand en plus grand, selon les nombres quarrées, qui en toute l'Arithmetique sont de grande perfection, comme chacun sciait qui les cognoist.
De Geometrie.

18 - Un vrai carré par l'addition & circumposition d'un gnomo (c'est à dire d'un rectangle, ou esquierre) demeure toujours en son vrai carré.

Comme en Arithmetique par l'addition des nôbres impers à l'unité, së font toujours les nombres pers: aussi aduient il en Geometrie. Car les gnomes des vrais quarrez sont comme les nombres impers. Telle est ceste figure A B C D E, laquelle circumposée a vn vrai carré, ne changera la nature quarree. Si doncques au tour d'un carré on y en adiouste trois, en forme de gnomo: viendra vn carré comme quatre,contenant quatre petits quarrez. Si on y en circumpose cinq : surviendra vn carré aiant neuf petits quarrez de pareille quantité. & ainsi peut on dire des autres.

Du quadrangle nommé Rectangle longuet.

19 - Le rectangle longuet est un quadrangle irregulier, d'un costé plus long que de l'autre, ia soyt qu'il ait les quatre angles droicts comme vn vrai carré, car il n'est irregulier,que sur l'inequalité des costez. Comme est ABCD, duquel les angles sont droicts: mais les deux costez A D, & B C sont plus longs que les deux autres A B, & C D. Et par ainsï tout quadrangle orthogone, n'est pas vrai & perfait carré.

20 - Tous quadrangles non quarrez, aiant les bases esgalles, & estants de pareille haulteure entre deux lignes equidistantes, sont esgauls.

C. i.
Ceste
Second Chapitre,

Cette règle a été mise aux triangles isosèles non isopleures, et j'entend pareillement des quadrangles non carrés, comme on voit en cette figure les trois quadrangles ABCD, ACED, et AEFD, lesquels sont tous trois sur une même base AD, et de pareille hauteur entre deux lignes équidistantes AD et BF : pourquoi tous trois sont égaux l'un à l'autre, et ainsi des autres.

Pour reduire vn quadrangle & rectangle longuet à son vrai quarré.

Les Alemans ont accoustumé de boire & manger sur tables quarrées, et les Francois sur tables plus longues d'un costé que d'autre. Il est doncques propos de reduire la table Francois a la table d'Allemaigne, et reduire tout quadrangle & rectangle longuet à son vrai quarré.

Soit donné vn quadrangle longuet AB CD, duquel les deux costez AB & CD soient comme quatre, et les deux autres AD & BC comme neuf. Le adjoignx les deux diuers costez ensemble, et en faiz une ligne droicte ED, laquelle vauldra autant que treize, faict de neuf & de quatre. Le diuidez ladite ligne ED par la moitie sur le point F, et sur le point A de la commune aduction, il produis en bas vn...
22. En tous vrais quarrez quelle proportion y ha des diametres ensemble, telle & pareille y ha des cercles, les vns aux autres : mais les aires font en doubl proportion.

C'est que l'aire est générale en tous cercles, & en toutes figures angulaires régulières, comme nous dits ci deuant. Ce qui appartient clairement en la présente figure, en laquelle le grand carré ABCD, est en proportion quadruple au petit carré EBDF. Car les costez du grand sont doubles aux costez du petit, & le diamètre du grand aussi double au diamètre du petit, comme AC double à la ligne ED, & ainsi aduent il par tout.

23. Le vrai carré du diamètre, est double au carré de l'un des costez.

Comme appart en ceste figure, en laquelle le grand carré EFGH, est double au petit carré ABCD. Car le grand est le vrai carré du diamètre du petit, comme de la ligne AC, ou DB : &
Second Chapitre,

le petit est le quarré de l'un des costez. Le grand quarré est comme buit, le petit comme quatre, ainsi par la resolution des triangles il est euident.

Le diametre de tout vrai quarré est incommensurable a son costé.

Cette proposition depend de l'autre. Car puis que le quarré du diametre est double au quarré de l'un des costez, il s'ensuit que le diametre est incmensurable au costé. C'est a dire, que de l'un a l'autre n'y ba proportion numerable, comme d'un nombre a l'autre. Car en quelles & quantes parties qu'on diuise le diametre, jamais en pareilles & semblables parties ne scroit le costé estre diuise : pour ce qu'en Arithmetique jamais un nombre quarré ne peut estre double a l'autre. Et qui d'un nombre quarré veult faire un plus grand quarré, il faut multiplier le petit quarré par un nombre quarré, comme quatre par quatre, ou par neuf, ou par seize : et il suriendra un nombre quarré. Et ainsi se fait en Geometrie comme en Arithmetique: car de deux quilarrés ne se sera jamais un quarré, ne de trois, ne par quelque autre nombre non quarré, Comme aies auous ci dessus figure & demonstre.

Du Rhombe.

L'E Rhombe est un quadrangle irregulier aiant seulement quatre costez esgauls, mais no pas les angles. Les vulgaires l'appellent une lozége. Come est ici ABCD, duquel les quatre costez sont esgauls, mais les deux angles ABC & CDA sont obtus, et les deux autres DAB,
De Geometrie.

D A B, & B C D, sont agus. Et les diamètres A C, & B D ne sont aussi égaux, comme ils sont en un vrai carré.

26. Un Rhombe est composé de deux isopèlesures.

Comme on voit en la figure précédente A B C D, en laquelle y ha deux isopèlesures A B D, & B C D: & d’autre sens y ha deux triangles ambygones A B C, & A D C, desquels les angles obtus sont vrais angles hexagoniques, & doubles aux angles de l’isopèleure.

Du Rhomboide.

27. Rhomboide est un quadrangle ressemblant au Rhombe, mais il n’ha les costez égaux, ne aussi les angles. Comme on voit ici A B C D, duquel les costez A D, & B C, sont plus longs que les costez A B, & C D. Auquel si on produit le diamètre B D, sera le Rhomboide resolu en deux triangles scalènes.

Du quadrangle irrégulier, nommé Trapeze.

28. Il y ha encore une espece de quadrangle fort irrégulière, laquelle par les Grecs est nommée Trapeze. Et est comme la figure A B C D, ou autrement ainsi qu’on le vouldra peindre & figurer. Car une chose irrégulière est variable & volontaire, & se peut en diverses manières représenter. Et a cause de l’irregularité de ladite figure, n’en ferons logue mention. Il est seulement a noter en toute espece de quadrangle, soit régulier ou irrégulier, que tous les quatre angles ensemble de quelque sorte
Second Chapitre,
sorte qu'ils soient, valent autant & non plus que quatre angles
droïts.

Du pentagone irregulier.

Le pentagone irregulier est en plu-
sieurs sortes, mais ici ferons mention
seulement du plus certain, lequel est
fait & composé d'un vrai quadré, sur lequel
reposé & est assis un isopleure. Comme est la
figure ABCDE : en laquelle sur le quadré
ABDE, est assis l'isopleure BCD, faisant
le pentagone irregulier, ressemblant à la figure
d'une maison. Il est irregulier pour cause, que
ia soit qu'il ait les cinq costez esgaules, il ha les angles diffornes.
Car il en y ha deux droïts, BAE, & DEA : deux obtus, ABC
C, & CDE : & vn aqu, BCD. Il y ha autres pétagones ir-
reguliers, aians les costez & les angles inesgaules.Mais d'icelus, a cau
se de la grande irregularité, ne s'en fait long fermon.

Du pentagone regulier.

Le pentagone regulier est moult plus fort a figurer que l'irre-
gulier : mais il se peut trouver par le moien de l'irregulier,
aussi par plusieurs autres moiens a present inconnuez.
Comme par la division de l'angle droït ou de fon arc en cinq par-
ties esgaules, & adiouster vne quinte.Car on fera l'angle du pentagone regulier, lequel est à l'angle droït sesquiquint, ou comme six à
cinq, ainsi que l'angle droït à l'angle de l'isopleure est sesqualter,
c'est à dire, comme trois à deux, ou six a quatre.

Sur la ligne assignée, il faut creer & figurer
vn pentagone regulier.

Soit
Soyt la ligne assignée A B, selon la quantité d'elle il tourne deux arcs ACD, & BCE, si logis que ie woudlray.

L'angle especial du pétagone regulier, est a l'angle du quarré, est a dire a l'angle droit, come six a cinq.

C'este proposition depend de ce qu'on ha dit ci deuät. Il fait un angle droit ABC, sur la ligne B C: si il divise l'arc A D E C en trois, l'arc D E C sera l'angle de l'isopleure. Et si il divise ledit arc ou son pareil en cinq parties (comme avons fait) C.iiiij. & on
Second Chapitre,

& on adjoigne audict arc une quinte par dessus lors sera de six quintes le vrai & especial angle du pentagone regulier. come est l'âge FBC, estant a l'angle droit sesquiquint c'est a dire come six a cinq. Et qu'adon scia faire l'âge especial de chasue figure reguliere sur la ligne assignee, il est facile de faire ladite figure de laquelle l'âge est trouve, & perfaict.

Par l'âge du pentagone assigne, perfaire le pentagone. 33

Soit l'âge du vrai pentagone assigne & trouve come il est dit ci deuat ABC, & la ligne AB, essalle a la ligne BC. Le divise chasen coste AB, & BC, en deux moities sur les points D & E, des sus lesquels se fai deux perpendiculaires DF, & EG, lesquelles se divise tot sur le point H, lequel se di estre le vrai ceter du pentagone qu'on demade. Parce que mets le pied du copas dessus ledit point H, & tourne le roid selon la quantite & ouverture des lignes ou logueurs HA, HB, & HC: & tu auras le cercle dedes lequel perferas facilement le pentagone qu'on demade selon les mesures des lignes AB, & BC proposees.

Le diametre de tout regulier pentagone, est la ligne droite venant du chef ou pignon du pentagone, & seant sur la base perpendiculairement, & la divisant en deux moities.

Comme au precedent pentagone, est la ligne GE perpendiculaire sur la base BC, divisant icelle en deux, & passant par le centre dudit pentagone, comme par le point H.

Sisur
35 Si sur la base d'un vrai pentagone on produit deux lignes droites iusques au point de l'angle opposé, il se fera un triangle isocèle : du quel les angles de la base seront doubles à l'angle supérieur.

Comme si au présent péta- gone ABCDE, on pro- duit deux lignes AC, & EC : ie di que le triangle isocèle A CE, aura les deux angles infe- rieurs CAE, & AEC, doubles à l'angle supérieur ACE. Ce qui appert clerement, si on produit les deux lignes AD, & EB : lesquelles partiront chacun desdits angles en deux, dont chacune des moitiés sera pareille audict angle supérieur A CE.

36 Si sous l'angle du pentagone on produit vne base : ledict angle du pentagone, sera triple a chacun angle de la base.

Eci appert clerement en la figure precedente, ou l'angle EAB, est triple a chacun des deux angles AEB, & EBA. Et aussi bien appert en la presente figure : en laquelle l'angle ABC (qui est l'angle du vrai pentagone) est triple aux deux angles de la base AC, c'estaist auoir BAC, & BCA. Car par les deux lignes BD, & BE, ledict angle ABC, est parti ou divisé en trois angles ABD, DBE, & EBC : dont chacun est pareil a chacun des deux angles BAC, & BCA, estants sur ladite base AC.

Les
Second chapitre,

Les cinq angles du vrai pentagone, valent autant que six angles droits.

A cause est, pour que chacun angle pentagonal est à l'angle droit comme six à cinq : parquoy les cinq dudit pentagone, valent cinq angles droits, & cinq cinquièmes, qui font le sixième. Ou pour ce que les cinq angles pentagoniques, ont autant de telles septièmes, que les six droits de cinquièmes : & six fois cinq, font autant que cinq fois six.

La base de l'angle du vrai pentagone, est aux costez dudit angle, comme quatre à deux & demi.

Sur la ligne donnée, faire & figurer un vrai pentagone, autrement que dessus a esté dit.

Nous avons mis une fois ceste proposition, mais il ne seroit possible selon sa declaration de faire le pentagone qu'on demande : pour ce qu'il faut diviser l'angle droit en cinq parties.
ties esgales,pour avoir l'angle du pentagone: ce qui est encore inco-
gneu.Car personne ne la trouué ne demesre.Nous mettrons donc-
que ici la mode plus facile,plus expediente,& plus breue.Soit la li-
gne donnée AC: ie la parti en
quatre . Et selon que iay dit
maintenat,par deux lignes AB
& BC, aiais chasqune deux
parties& demie de la ligne AC,
fei sur elle l'angle ABC,qui
fera l'angle du vrai pentagone.
Puis ie produis les lignes AB &
CB, si longues que ie veul : & selon la ligne AC, sur les deux
points A & C, ie fai deux arcs, & la ou ils diuiferont les deux
lignes AD & CE, ie note deux points D & E, & produis les
lignes AD & CE, lesquelles feront esgales à la ligne AC,&
vrais costez du pentagone quon demande. Puis sur les points D
& E, selon la ligne AC, tourne de rechef deux arcs: & la ou ils
se diuieront,note le point E, lequel fera le pignon & chef dudit
pentagone requis.Produis doncques deux lignes DF & EF, &
fera ledict pentagone parfait.

40 Si on produit toutes les lignes d'un pentagone d'an-
gle en angle : on fera au milieu vn petit pentagone
contrepoé au plus grand.

Comme il appert en la pre-

sente figure, ABCDE:en

laquelle par la production
de cinq lignes interieures d'angle en
angle:est procree vn petit pentago-

te interieur, qui est FGHIK,co
trepose au plus grand. Car il ba les

angles
Second Chapitre,
angles au droit des costez du grand, & les costez au droit des angles.

Du pentagone saillant ou egrendient.

Ses auons parü le vrai pentagone uniform. Tëps est de parler du pétagone egrendient, qui ha les angles equipâs dehors. Entre les triâgles & quadrâgles ne sont aucüs saillâts ou egrediëts. Car les costez prolongez tât qu'on vouldra, jamais ne viendront a concurrence, ne a creer angle. comme il appert en ce triangle A, & en ce quarré B.

Si on produit oültre tous les costez d'un vrai pentagone: ils viendront a concurrence, & feront le pentagone saillant ou egrendient.

Comme il appert par ce pentagone A B C D E, duquel tous les costez produits oültre font le pentagone saillant ou egrediët F G H I K, aignant cinq angles sur les cinq costez, & hors du pentagone intérieur A B C D E.

Touts les cinq angles de chascun pentagone saillant ou egrendient, valent autant que deux angles droitâts, & non plus.

Eci se peust facilement véoir a l'œil, & prouuer en la prece- dente figure. Car tous les cinq angles du pentagone uniforme A B C D E, valent autant que six angles droitâts, & chascun desdits angles par l'intérieur pentagone saillant ou egre-
De Geometrie.

egrédient est diuisé en trois estale-
ment. Parquoy les quinze petits an-
gles, valent precisement six angles
droits : & le pentagone saillant ou
egrédient, de ces quinze n'en com-
pred que cinq. Parquoy lesdicts cinq
angles saillants ou egredient, ne va-
 lent que deux angles droits. Car
deux font le tiers de six: comme cinq font le tiers de quinze.

De l'hexagone.

Sur la ligne assignee fabriquer un vrai hexagone.

Oit la ligne assignee A B: ie
fai sur elle vn isopleure, com-
me il ba esté dict ci deuant, le
quel soit A C B. Puis sur le point
C, selon les lignes C A & C B, fai
vn cercle entier B A D E F G, du
quel ie diuise la circonferéce en six,
selon le semidiametre C A: puis ti-
ire les lignes A D, D E, E F, F G & G B. Ains si sera perfait
le vrai hexagone sur la ligne assignee A B.

Tout vrai hexagone, est composé de six isopleures:
desquels le centre de l'hexagone est le commun chef.

Ce propos est assés apparent en la figure precedente : &
n'est necessaire de la renoueiller. Car trois diametres pro-
duits en chacun hexagone, font la resolution d'iceluy
en six isopleures.

Si l'on
Si l'on produit en vn hexagone d'angle en angle six lignes droictes : au milieu du grand se fera vn petit hexagone.

Comme l'on voit ici au milieu du grand hexagone $ABCDEF$, vn petit hexagone $GHIKLM$, uniforme & regulier, & qui est la tierce partie du grand & exterieur $ABCDEF$. Car le grand est triple au petit: comme il appert par la resolution & division faictte en petits triangles touts esgauls, dont le grand en contient dix & huit, & le petit n'en comprend que six.

Le diametre de l'hexagone regulier, est double au costé d'icelluy.

On le voit a l'oeil en la presente figure, en laquelle les trois diametres AD, BE, & CF sont doubles a chacun costé. Car tout ledit hexagone est divise en six isopleures esgauls, ains le point G pour commun chef, qui est le centre dudit hexagone.

Au tour de chacun hexagone regulier, se peuvent figurer six hexagones a luy esgauls, & non plus.
De Geometrie.

Ceci appert en la presente figure ABCDEF, en laquelle y ha vn hexagone G au milieu, & six a l'environs a luy essauls, remplissant toute la plaine sans aucune vacuité d'espace. Et n'y ha que trois especes de figures regulieres qui se puissent joindre ensemble, & remplir le lieu: c'est a savoir l'isopleure, le quadré, & l'hexagone.

49 C Le vrai & special angle de tout hexagone regulier, est double a l'angle de l'isopleure.

Ceci appert en la figure presente, en laquelle deux vrais isopleures ADB, & BDC, joindes ensemble, sont d'un costé & d'autre le vrai angle du regulier hexagone, comme ADC, & ABC: car aussi six isopleures joindes sur vn mebre centre, font vn hexagone regulier. Comme il appert par les figures precedentes.

50 C Quelle proportion y ha entre les diametres de plusieurs hexagones, pareille proportion y ha entre les circonferences. Mais la proportion des aires, est double a la dicté proportion.

Ceste proposition (comme auoys dict ci dessus) est generale en toutes les especes des figures regulieres. Et se peut facilement esprouer en la suiuyante figure: en laquelle les costez & les diametres du grand & exterior hexagone GHKLM, sont
Second Chapitre,

Sont doubles aux côtes et aux diamètres du petit, et intérieur hexagone ABCDEF. Et le dit hexagone, est quadruple au petit, contenant vingt et quatre petits isopleures : et le petit n'en ha que six, comme on voit à l'œil.

L'angle de l'hexagone, est à l'angle droit comme huit à six, ou comme quatre à trois.

L'angle droit est à l'angle de l'isopleure comme trois à deux, et l'angle de l'hexagone à l'angle de l'isopleure est double : par quoi l'hexagone à l'angle droit est comme quatre à trois, et par conséquent comme huit à six. Exemple ABC, qui est angle droit, est à l'angle de l'isopleure EBC, comme trois à deux ; et l'angle de l'hexagone DBC, double à l'angle EBC, est à l'angle droit ABC comme quatre à trois, ou comme huit à six.

Les six angles de chacun hexagone, valent autant que huit angles droits.

Il s'ensuit nécessairement, si l'angle de l'hexagone est à l'angle droit comme huit à six : que les six de l'hexagone, valent autant que huit angles droits. Car chacun des six angles de l'hexas-
De Geometrie.

de l'hexagone, contient autant de telles huitiesmes, que chacun
des huit angles droits ha de sixiesmes. Et six fois huit font au-
tant, que huit fois six.

De l'hexagone egredient.

Si on prolonge droitement les costez de tout he-
xagone regulier, on fera l'hexagone egredient.

Comme il appert en cette figure ABCDE F, en laquelle
par la prolongation des costez,
est forme l'hexagone egredient, aient six
angles eguals, respondants touts a l'an-
gle de l'isopleure.

Les six angles de l'hexagone
egredient, valent autant que quatre angles droits.

A cause est, pour ce que chacun desdits angles est vn an-
gle de l'isopleure, dont les trois valent deux angles droits:
Par quoi les six en valent quatre.

Tout hexagone egredient est fait & composé de
deux isopleures egauls, & cotreposez, dont l'un diuise
les costez de l'autre en trois.

On le voit clerement en ce-
ste figure. Car l'isopleure
ABC est contrepoze a l'i-
soleure DEF, & les deux font
un hexagone egredient ADBECF,
l'un desdits isopleures diuisant
chacun costé de l'autre en trois par-

D. j.
ties
Second Chapitre,
ties esgalles. Comme il appert par la dite figure.

Tout hexagone egredient, est double a fon hexagone regulier.

C'est propos est affes notoire en la presente figure. Car l'hexagone regulier & interieur ABCD EF, contient six petits isopleures : & l'hexagone egredient en comprend douze, en adoinstant sur l'hexagone interieur six isopleures par dehors, esgauls & semblables aux isopleures interieurs.

De l'heptagone.

Heptagone est une figure angulaire & reguliere, aiant sept costez & sept angles esgauls. Mais comment on le puiet creer & figurer, ne Euclides, ne quelque autre Geometriien en ont donne la science. Car a cause qu'il est de nombre imper, il est fort difficile a trouver. Et ia soit que le comentateur de Euclides excusant la difficulte, dit que la science de l'heptagone n'est de grande utilite : ce non obstant pour la reuercence du nombre de sept, sur lequel Dieu a cree & perfeit le monde, on debroit mettre peine de trouver l'art & la science dudit heptagone, sans y demourer (comme l'on dict) a quia.

En vn vrai heptagone, y ha six sortes de lignes a considerer & melurer.

Premier il y ha le coste, côme est A B. Puis il y ha une base soub l'un des angles, comme est la ligne A C, estant soub l'angle A B C. Puis une autre ligne, côme A D, aiât sur soy deux
De Geometrie.

deux angles ABC & BCD. Puis la ligne produite depuis chas-
cun angle usques au cêtre: comme sont
AH, & HE. Puis la ligne du centre
usques a la moitie de l'un des costez,
comme HI. La derniere est la ligne
composee de ces deux, comme AHI,
nomee le cahet de l'heptagone, di-
uisant l'heptagone en deux parties.
Qui s'eauroit les proportions & me-
sures de ces six lignes, facilement
trouueroit la science pour figurer & creer ledit heptagone.

En un heptagone vniforme y ha quatre triangles
isosceles a considerer & mesurer.

Plusieurs triangles on peut faire touts diuers dedens vn vrai
heptagone, pour aider a trouver
la science de luy: mais il en y ha qua-
tre principauls, qui sont isosceles.
Dont le premier est l'isoscele ABC,
où AGF: desquels l'angle superieur
copris sur les costez dudit hepta-
gone, est quintuple aux deux angles de
la base. Le secod triangle est l'isoscele
CAF: duquel l'angle superieur au
pointe A, est triple a chasun angle de la base CF, & comme trois a
deux. Le tiers triangle est l'isoscele DAE: duquel l'angle superieur du
pointe A, est la tierce partie de chasun angle de la base DE, c'est
a dire de l'angle ADE, & AED. Car chasun angle de la base, est
triple a celluy qui est comprins sur les deux costez. Le quart triangle
est l'isoscele DHE, duquel le pignon H, est le cêtre de l'heptagone.

D ij. & la
Second Chapitre,
& la base est le costé du dict heptagone. Mais la proportion des angles de cestuy dernier triangle, est incertaine & incogneue. Oultre ces triangles isosceles, y ha vn secalene comme ACD, ou AEF.

L'angle de l'heptagone, est a l'angle droit, comme dix a sept.

Qui auroit trouvé la science de partir vn angle droit en toutes parties egales, comme en trois, en quatre, en cinq, en six, ou en sept, & ainsi des autres; on seauroit facilement sur toutes lignes assignees figurer & decrire toutes figures regulieres, comme auons ia dict du pentagone, & de l'hexagone. Car l'angle droit aux angles de toutes figures regulieres, est en certaine quantite & proportion. Premièrement il est egal a l'angle du vrai quadré. A l'angle du pentagone, il est come cinq a six. Et a l'angle de l'hexagone, come six a huit. Et a l'angle de l'heptagone, comme sept a dix. Comme ici auons divisé l'angle droit ABC, en sept parties. Et l'angle DBC (qui en contient les dix) est le vrai angle de l'heptagone regulier, qu'on vouldroit faire & figurer sur la ligne assignee BC. Et est la plus courte & facile voie de creer tout l'heptagone regulier, mais qu'on sceut le moien de diviser tout angle droit en sept : ce qui n'est encore sceu ne trouvé.

Autres manieres y ha pour faire l'heptagone, mais a present incogneues, & non inuentees.

Par les triangles (desquels auons naguerez parlé) on peut facilement figurer & faire l'heptagone : mais qu'on sceut figurer lesdicts triangles. Comme premiérement par le triangle ABC.
De Geometrie.

A B C, aient l'angle superieur & sur le point B, quintuple aux deux angles de la base AC. Aussi par le triangle C A F, aient l'angle superieur au point A, comme trois a deux a ceuls de la base C F. Pareillement par le triangle D A E, aient les deux angles inferieurs de sa base D E, chacun triple a l'angle superieur du point A. La maniere de trouuir & figurer ces trois triangles, est a present incognoeu. Par quoi aussi la composition de l'hexagone demeure incognoeu iniques au iourdbuy. Si quelcun la peust trouuir, se sera bien fait a lui ; & sera grande vtilite aux Geometriens pour supplier & inuenter ce qui est a present imperfaict & incognoeu.

62 C De l'heptagone regulier par le prolongement des costez, furuient l'heptagone faillant ou egredient.

C omme il appert au present hexagone, lequel sur le regulier & interieur A B C D E F G, adoustfe sept angles faillants hors & esgauls l'un a l'autre : desquels si on produit les lines droites passants par le ciete de l'heptagone, elles iront cheoir sur les angles opposites dudit heptagone interieur & regulier, & chacune partira tout ledit heptagone en deux parties esgaalles : comme il appert par la presente figure.

63 C Si on prolonge les costez de l'heptagone faillant D, iij. ou
Second Chapitre,
ou il surviendra un autre heptagone moulant plus egredient que le premier.

Comme on voit en la présente figure, en laquelle au tour du premier heptagone y a double heptagone saillant ou egredient,
l'un est ABCD
EFG, l'autre HI
KLMO, qui est moulant plus egredient,
& hors saillant que le premier, aient aussi les sept angles plus agus: & toutes les saillies sont egalles & coprin-
lies dedens un cercle, qui le vousdroit a l'entour figurer.

Tous les sept angles extérieurs du dernier & plus 64 long heptagone saillant, ne valent que deux angles droit.

Comme les cinq angles extérieurs de tous pentagones egredients, ne valent que deux angles droits: aussi tous les sept angles extérieurs du dernier & plus saillant he-
tagone, ne valent que deux angles droits. Sept valent donc autant que cinq. Car nous avons dit deus, que pour faire un vrai pentagone, il faut diviser l'angle droit en cinq, pour trou-
uer l'angle du pétagone. Aussi pour obtenir & faire l'angle de l'he-
tagone, il faut diviser l'angle droit en sept. Par quoi aux pen-
tagones
De Géométrie.

tagones et heptagones saillants, se fault reigler par cinq et par sept angles saillants, qui tous ensemble ne vaudront que deux angles droits.

Des figures angulaires en general.

65 L'angle droit est le vrai & especial moien a trouver & figurer tous les angles des vraies figures angulaires.

Chacune figure angulaire ha son propre & especial angle, lequel est en certaine proportion a l'angle droit, comme avons ia ditz plusieurs fois. Parquoy l'angle droit est le vrai & certain moien pour trouver & creer tous les angles des figures angulaires. Et consequement il est aussi le moien, a perfairie lesdizies figures sur les lignes assignees. Car qui ha trouve & fait l'angle de quelque figure, il peut facilement perfairie entierement la dite figure.

66 Declarer fault la proportion de l'angle droit, a chacun angle especial des figures angulaires.

Remier, l'angle droit a l'angle de l'isopleure, est comme trois a deux: a l'angle du vrai quarré, il est pareil & esgal. L'angle du pentagone a l'angle droit, est comme six a cinq. L'angle de l'hexagone audict angle droit, est comme huit a six. L'angle de l'heptagone luy est comme dix a sept, & ainsi des autres: comme il est demonstré en ceste table.

<table>
<thead>
<tr>
<th>La proportion des angles, a l'angle droit.</th>
</tr>
</thead>
<tbody>
<tr>
<td>L'angle de l'isopleure, comme trois a deux.</td>
</tr>
<tr>
<td>L'angle du quarré, est esgal a l'angle droit.</td>
</tr>
<tr>
<td>L'angle du pentagone, comme fix a cinq.</td>
</tr>
<tr>
<td>L'angle de l'hexagone, comme huit a fix.</td>
</tr>
<tr>
<td>L'angle de l'heptagone, comme dix a leptr.</td>
</tr>
</tbody>
</table>

D.iii. Les
Second Chapitre,

Les angles droits que valent tous les angles de chacune figure angulaire, ensuiuent continuellement les nombres pers.

Comme les trois angles de l'isopleure valent deux angles droits, les quatre du vrai quarré valent quatre, les cinq du pentagone valent six droits, les six de l'heptagone en valent huit, les sept de l'heptagone valent dix angles droits, & ainsi des autres: tellement que l'augmentation va toujours par deux, selon les nombres pers qui s'entresuiuent par l'augmentation de deux en deux: comme 2, 4, 6, 8, 10, 12, 14.

Si une ligne droite est perpendiculaire sur le milieu d'une autre, puis deux, puis trois, & quatre, & cinq, & ainsi conseqüemment: elles font autant d'angles droits, que valent continuellement tous les angles des figures regulieres.

Si une seule ligne droite est perpendiculaire sur le milieu d'une autre, elle fait deux angles droits. Parquois ladite incidence, fait autant d'angles droits, comme valent les trois angles d'un triangle quel qu'il soit. Et si deux lignes droites sont perpendiculaires sur le milieu d'une mesma ligne droite, elles feront quatre angles droits respectans aux quatre angles du vrai quarré. Trois lignes droites sur le milieu d'une mesma ligne droite, font six an=
six angles droits, répondants aux six angles droits, que valent les cinq angles du vrai pentagone.

Quatre lignes droites perpendiculaires sur une même ligne, font bien angles droits, répondants aux bien angles droits, que valent les six angles de l'hexagone.

Cinq lignes droites reposant perpendiculairement sur le milieu d'une même ligne droite, font dix angles droits, autant que valent les sept angles d'un vrai heptagone. Et ainsi doibt on dire de l'incidence de plusieurs lignes droites, perpendiculaires sur les points du milieu d'une autre même ligne droite.

69 Sur une même droite ligne, constituer & décrire toutes les figures angulaires dessusdictes.

S

Ve la ligne A B, par le moi en de deux demi cercles descript s'est ladite ligne, & divisant l'un l'autre sur le point C, qui est chef ou sommet de l'isopleure A C B, sont figurees les figures proposées. Comme le quarre A D H B, le pentagone A E M I B, l'hexagone A F N O K B, & le heptagone A G P Q R L B, desquels out les angles (selon ce que dessus est dit) font en continuelle proportion à l'angle droit, qui est le chef & le plus especial de tous angles reguliers. En ladite figure on voit claremê, que toutes figures esstants nommées ou exprimees par nombre imper, comme triangle, pentagone, heptagone, ont le pignon & chef superieur opposé a leur base.
Troisième Chapitre,

base A B, & les figures exprimées & comprises par nombre per (comme le carré & l'hexagone) sont comme aians plate forme au dessus opposée a leur base, & la ligne perpendiculaire sur le milieu de la base (comme est la ligne Q M C S) passe parmi les centres & les pignons & plates formes desdites figures, les diuant par la moitie justement.

Qui scauroit diuier l'angle droit en toutes parties 70 esgalles indifferemment, il scauroit facilement figurer & descrire toutes les figures angulaires sur toute ligne droite proposee.

Nous avons assez & souuest touché & expliqué ceste matière, & l'avons ici remise en forme de proposition, pour inciter l'engin des bons estudiâts a trouver la science de diuier l'angle droit en toutes parties esgalles: car ladite science est fort utile a la Geometrie, & ne fut jamais inuente ne trouuee, sans laquelle on ne scauroit faire la figure precedente, ne ce que l'antecedente proposition requiert & propose accomplir. Parquoy je prie ceux qui sont de cler engin & studieus de la Geometrie, qu'ils mettent peine de trouver ceste belle & notable & fort utile invention, moulx plus utile que la quadrature du cercle, laquelle a esté long temps inconnue, & par l'incitation & aduertissement d'Aristote a esté de nostre temps inventee & venue a connoissance de chascon.

DES INSCRIPTIONS ET CIR-
cunscriptions des figures angulaires dedens & autour les cercles.

Chapitre troisième.

Et premierement, au tour d'un isopleure, & aussi dedens, figurer vn cercle.
Pour ce faire, il faut trouver le centre de l'isopleure, par trois lignes diuissant les costez & les angles en deux. Puis figurer les deux cercles, l'un par les pointz des angles, & l'autre par le milieu des costez. Ainsif serôt faiz les cercles propoz. Comme on voit fait en la presente figure aiant deux cercles, l'un au tour de l'isopleure A B C, & l'autre dedens, c'est a savoir D E F, desquels le commun centre est le point G.

1. Au tour & dedens vn cercle, describe & figurer vn isopleure.

C'est la convers de la precedete proposition. Divise doczques le cercle propose selon son semidiame- tre en six. Puis selon trois des pointz (en delaissant vn point entre deux) fais l'isopleure dedes lediet cercle, comme est A B C. Puis apres sur les costez de l'isopleure interieure, fais encore trois isopleures egauls audit inte- rieur. Le di que de ces trois exterieurs, sera fait vn grand isopleure exterieur, au tour du cercle donne & propozé, comme est D E F.

3. L'isopleure qui est au tour d'vn cercle, a celluy qui est dedes: pareillement le cercle qui est autour d'un isopleu- re, a celluy qui est dedes: sont en proportion quadruple.
Troisième Chapitre,

Eci appert euillemet en la prochaine & precedete figure, en laquelle le grand & exterieur isopleure DEF, contient quatre isopleures esquis, dont le petit & interieur ABC en est vn. Et en l'autre figure precedente, le diametre du grand cercle ABC, est double au diametre du petit cercle DEF. Parquoy selon ce qui a este dit ap ci deuant, le grand cercle est quadruple au petit.

Dedens & au tour d'un vrai quarre, faire & descrie vn cercle.

Oit propose le quarre AB CD, duiue le docues par deux lignes droites au milieu des angles & costez. Car lesdites lignes passeront par le centre dudict vrai quarre, qui est le point E: & par ainsi feras & deschiras aiseement lesdits cercles, comme tu vois en la presente figure.

Dedens & au tour d'un cercle, descriere & figureur vn vrai quarre.

C'est la course de la precedente proposition. Duiue donc les le cercle ABCD, en quatre parties par deux diametres AC, & BD, comme tu vois en la presente figure: & facilement tu deschiras & feras dudit quarre tant au
De Geometrie.

dedens que au tour & environ le dit cercle. comme sont les quar-
rez A B C D, & E F G H.

6 Deux cercles descript l’un dehors & l’autre dedens
vn quarre, ensemble deux quarrez descript l’un dehors & l’autre dedés vn cercle, sont en double proportion.

C e propos est assez declare ci deuant. Et cleremët on voit
que le grand quarre E F G H, qui est le quarre du dia-
metre du petit: est double au petit quarre A B C D, qui
est le quarre de l’un des costes. Et en quelle proportion sont les deux
quarrez, entre lesquels moïenne vn cercle: en la pareille sont deux
cercles descript l’un dedens & l’autre dehors le vrai quarre.

7 Dedés vn cercle, faire & figurer vn vrai pentagone.

Edens le cercle assigné A B C, ie tire le diametre A D C:
puis le semidiametre D C, ie divise en deux parties sur le
point E. Pareillement le demi arc A B C, ie divise en deux
moities sur le point B, & pro-
duis la ligne B E. Puis du point
E, ie prens du diametre A D C,
la ligne E F, pareille & esgalle
a la ligne B E. Apres ce ie tire la
ligne B F, laquelle ie di estre le
Vrai costé du pentagone que l’on
v veut figurer dedes le cercle pro-
pose. Perfaïs doncques le pen-
tagone selon la ligne B F: & tu auras ton intention. Ceste nouvelle in-
uention est belle, & n’est pas en Euclide. Mais Ptolemee la inuen-
tee & demonstree au neufiesme chapitre du premier livre de son
Almageste. Et Geber son commentateur en la dixneufiesme propo-
sition
Troisième Chapitre,

ition de son premier liure qu'il ha descript sur l'dit Almageste, & autres l'ont depuis ensuin.

Au tour d'un cercle, pourtraire & figurer en pentagone régulier.

Viscait faire le pentagone régulier dedens le cercle, facilement le fera dehors & au tour du cercle. Produis doncques les semidiameters du pentagone ABCDE, estant dedés le cercle, iusques aux points & chefs des angles d'icelluy. Puis sur lesdits semidiameters & points des angles ABCDE, produis cinq perpendiculars si longues d'un costé & d'autre, qu'elles conviennent ensemble. Et ainsi perferas le pentagone qu'on demande à l'environ du cercle assigné, comme est le pentagone FGHKL.

Dedens & au tour d'un pentagone, descrire & figurer vn cercle.

Nous avons montré ci des sus, comment sur la ligne assignée se doit figurer & descrire vn pentagone. Soit doncques le pentagone assigné ABCDE, selon le semidiametre de luy comme selon la ligne FB. descris vn cercle passant par les points des angles ABCDE. Puis selon la ligne
De Geometrie.

la ligne F C, divisant le coste du pentagone par le milieu, desris
vn autre cercle dedens ledict pentagone : ainsi sera fait ce qu'on
demande. Et ceste regle se doit garder en toutes figures angulaires
pour les tirer au tour & dedens vn cercle, ou pour tirer vn cercle
au tour & dedens icelles.

10 Dedens & au tour d'un cercle, figurer vn hexagone
ne regulier.

Ceci se peut faire plus facilement que les autres, pour ce que l'hexa-
gone se fait par le semidiametre du cercle. Parquoy legie-
rement se peut dedens & au
tour du cercle assigné figurer vn
hexagone, comme l'on peut voir
en la presente figure.

11 Dedens & au tour d'un hexagone, descrire vn
 cercle.

Cecas est aussi facile, comme le precedent : pour ce que le
coste de l'hexagone interieur, est egal au diametre du cer-
cle, comme n'agueres a esté dict.

12 Dedens vn cercle propose, figurer vn heptagone.

A science de l'heptagone est fort difficile; & n'est encore
trouuee la maniere de faire vn heptagone regulier sur vn
gle droite assignee. Mais de le faire dedens vn cercle,
nous en avons trouve l'art fort brefue & facile. Soit doncques le cercle assigné & propose ABC. Le produis dedens luy selon la
science
Quatrième Chapitre,

science devant exposée, un vrai isopleure ABC, et diuise le costé AC en deux moitiés sur le point D, par la ligne perpendiculaire BD. Le di que la moitié dudit costé (comme BD, ou DC) est le vrai costé de l'heptagone que l'on veut describe & figurer dedens le cercle ABC.

Parquoi il est facile de perfaire ledit heptagone, duquel le costé est facilement trouué. Et qui scait (comme dixt auons) figurer un heptagone dedens le cercle assigné, facilement le fera au tour. Et au contraire dedens UN heptagone proposé, & aussi au tour d'icelluy, fera UN cercle comme il sera requis. Mais il est difficile de trouver l'heptagone par soymesme, sans l'aide du cercle, & de l'isopleure estant dedens ledit cercle.

DE LA QUADRATURE DU CERCLE. 1

Chapitre quatrième.

Lusieurs le têps passé ont parlé de la quadrature du cercle, & ont pris grad peine pour la trouuer: ce qu'ils n'ont fait. Archimedes Syracusan, & Euclides Megarenensis, y ont exposé du temps: & n'y ont gueres profité. Arisloxe en ba escript, disant qu'elle se pouver trouuer, & n'estoit encore trouue: dont il a incité plusieurs a ce faire. Mais ils ne l'ont sceu trouuer, ne inuenter. UN Geometrien nommé Brauardin, en ba fait UN petit traicté, cuidât l'avoir bien inuentee. Mais il y a grad faulxe, & visible abus en son propos. Tellemet que par fa quadrature,auldroit que l'arc fust esgal a sa borde: ce qui est impossible. Car chascun scait que
que l'arc est plus long que sa corde, quelque petit qu'il soit. Vn petit
deuant nostre temps, le Reuerédissime Cardinal nomé Nicolaus de
Cusa, la bié trouuee & mise par escript en son liure, ia sofit que pour
cet faire il ait vse & procede par aucuns moiens estranges aux Geo-
metriens. Car il ha vse de diméssions infinies, lesquelles vne Geome-
trien ne coignoit, & ne confesserot iamais estre possibles. Nonob-
stant, son inuoction est bonne & approuve, tant par raison que par
expérience. Aussi pareillement avons prins peine de la trouver par
autre moien, & n'auons este frustrez de nostre labeur. Car nous
estant vne fois sur le petit pont de Paris, en regardant les roes d'un
chariot tournans sur le paeu:me surueint visible & facile occasion
de venir a fin de mon intention. Il est notoire, quand vne roe ha
faict vne tour entier sur le plat paeu, que la ligne droiite sur laquel-
le elle ha faict vne tour entier, est esgalle a la circonfurence de ladi-
ete roe. Parquoi ne restoit plus, que de trouver les certaines incidéces.
des points du quadrant de la roe, & de la moitie, & de la roe en-
tiere sur le paeu: a fin que par ce moien l'on puist trouver vne li-
gne droiite esgalle aux parties de la circonfurrence, & aussi a toute
la circonfurence. Sans lequel moien, ne se pouoit trouver la quadra-
ture du cercle. Moy retourné au logis, a l'aide du cópas & de la rei-
gle, trouuai sur vne table d'arain ce que ie cherboie facilement: cõme
nous le declarerons ci apres plus au long.

Trouuer vne ligne droiite, esgalle a la quarte par-
tie de la circonfurrence.

S oit vne cercle propose A B C D, divise en quatre quartiers par
deux diamètres, A C, & B D. Le prolonge le diamètre A C,
en bas tant que ie veul. Puis produis sous ledict cercle la ligne
F A G, touchant ledict cercle sur le point A, distant esgallement
au diametre B E D : laquelle ligne me representera vne plaine,
Quatrième Chapitre,

Sur laquelle le cercle proposé (représentat vne roe) se mouvra & fera son tour. Il divise le semidiamètre AE en quatre parties égales, & des fousbs le cercle prins la mesure d'une quarte partie: tellement que la ligne EAH contienne cinq desdites parties, & le semidiamètre EA, lesdites quatre. Puis ie produis la ligne HD, & fai le point H comme vn cétre: & selon la ligne HD, ie produis vn arc de cercle, insques a ce qu'il rencontre & divise la ligne FG sur les points F G. Ce di donques, que la ligne AG sera egalle a la quarte partie de la circonférence, & aussi de l'autre costé, la ligne AF. Car si le cercle ABCD estoit vne roe, tournaï sur la plaine FG vers le point G, ledit point D viendroit récoter & cheoir sur G, & de l'autre costé le point B tumberoit sur le point F.

Trouver vne ligne droicte, egalle a la moitie de la circunference.

Aciemét par la figure & declaratio précédete, se peut trouver ce qu'on demande ici: car qui ha trouvé la quarte partie, il ha la moitie, & aussi le tour. Comme la ligne FAG, qui est egalle a la moitie de la circonférence. Mais pour corroborer ladite inuétion, nous mettrons encore ceste proposition, a laquelle nous satissferons de nostre pouvoir. Soit donques reiteree la figure precedente. Le prolonge la ligne CEA en bas tant que ie veul, & selon la division du semidiametre EA, qui ha estoit faict en quatre parties egales, ie fai la ligne AI de six telles parties, depuis le point A insques au point I:tellement que toute la ligne CAI cöposee du diametre AC, & desdites
desdites six parties adioustees, soit comme quatorze, dont la ligne E H estoit comme cinq. Le produis droitement d'un costé & d'autre la ligne F A G, vers les parties ou pointes K, L; & mets le pied im mobile du copas sur le point I; puis selon la ligne I C, je descri vn grand arc, lequel diuisera la ligne K L (estant dessous le cercle, & représentant la plaine desdusdicte) sur les points K & L; puis tire les lignes I K, & I L. Le di que chaque des lignes A K, & A L, sera esgalle a la demie circonference: & toute la ligne K L esgalle a toute la circonference du cercle propose. Et que si ledict cercle A B CD, se tournoit comme une roe de costé & d'autre, sur la grande ligne K A L; le point C viendroit tumber ou sur K, ou sur L. Fais ainsi par tout, & trouveras la chose estre certaine & veritable.

4 CLIentiere resolution d'un cercle, sur vne ligne droi te esgalle a toute la circonference, fait vn quadrangle longuet quadruple audit cercle, & cotenant quatre fois autant que luy.

A suiyante figure demontre clerelement l'intelligece de la proposition. Car le cercle A B C D, fait vne entiere resolution.
Quatrième Chapitre,

La demi révolution d’un cercle, fait vn parallélogramme double au cercle : & la révolution du quartier dudit cercle, en fait vn esgall & pareil audict cercle.

Comme il appert en la précédente figure, en laquelle le parallélogramme A C F C, qui est le demi tour du cercle, est double audict cercle. Et le parallélogramme A C E D, est esgall & pareil audict cercle précisément.

Le parallélogramme du diamètre d’un cercle, & de la quarte partie de la circonférence, est au cercle esgall & pareil : & aussi est le parallélogramme du demi diamètre, & de la demi circonférence.

Comme il est démontré en la suintante figure, en laquelle le parallélogramme A C E F. fait du diamètre A C, & de la ligne...
De Geometrie.

ligne AF est-galle a la quarte partie de la cir-cunference : est esgal au cercle ABC D. Sembla-blement & par pareille raison, le parallelogramme AGHI, qui est fait du semidiameetre AG, & de la ligne AI, esgalle a la demie circumference : est esgal et pareil audict cercle ABCD.

7 C A tout cercle propose, faire vn vrai quarré esgal & pareil.

C Estre matiere laquelle le temps passe a esté investigable & fort difficile, & a laquelle trouver plusieurs gens de grand scouoir ont labouré & perdu temps, est de present fort facile a trouver. Car depuis qu'on ha vn quadrangle ou par-rallelogramme esgal au cercle, il est facile de trouver le vrai quarré esgal audict cercle, par la re-duction du quadrangle (quel qu'il soit) au vrai quarré. L'art & la sciece de ce faire est desus declaree, & n'est besoing de la repeter ici ne resumer. Soit donques comme parauant le cercle propose ABCD: par la sciece
Quatrième Chapitre,
dessus dite, je trouve que le parallelogramme A C E F, fait du
diamètre A C, & de la ligne esgale à la quarte partie de la circun-
férence A F, est esgale audit cercle. Il faut doncques resouldre le-
dict parallelogramme, & le reduire a vn vrai quaré: lequel soit A G
H I. Le di que le quaré A G H I sera esgale audit cercle A B C D.

Trouver art plus briefe & plus facile, a reduire &
tout cercle propose au vrai quaré.

S
Oit reiterée la figure
precedée, en laquelle
le semidiametre du cer-
cle KA soit divise en qua-
tre parties, comme dessus a esté
dict. Et soubz ledict dina-
metre adionfée vne quarte AL,
tellement que la ligne AL
soit de cinq telles parties, dit
ledict semidiametre KA est quarte. Produis la ligne C E (qui est
vn costé du parallelogramme A C E F) tant que tu voudras:
puis tire la ligne LD droitemét,infques a ce qu'elle diisse & ren-
contre la ligne C E, sur le point M, le di doncques, que la ligne C
E M sera le vrai coste du vrai quaré qu'on demande, lequel sera
esgale au cercle propose & assigné: comme est le quaré A G H I,
lequel est produicé selon la ligne C E M.

A tout cercle assigné trouver son vrai quaré a lui
pareil & esgale.

S
Oit quelconque cercle assigné A B C D. Le produis en lui
deux diametres perpendiculairement soy intersecantes sur le
centre E. Puis le diisse chascune desdictes diametres en buiét
parties
De Geometria.

parties esgalles: & prolonge de
touts collez lesdites diametres
de la longueur d'une buietie
me partie infusques aux pointes
FGHI: & parfaï le vrai
quarré sur lesdites pointes FG
HI. Ainsi ie di que lediit quar-
ré est vraiment & necessaire-
ment esgal au cercle assigné. Et
est ceste inuention fort belle &
facile & certaine:ia soit que sa demonstration n'est ici proposee ne
mise par escript.

10 C A tout quarré assigné trouver le cercle a luy pa-
reil & esgal.

C Estre proposition est le
retour & la converser
de la precedente. Soit
quelconque vrai quarré propose
& assigné A B C D. Le pro-
duis en luy deux diametres A
C & B D, soy interscantes sur
le centre E. Puis ie duiise lesdii-
tes diametres chascune en dix
parties esgalles. Puis sur le centre E, ie produis vn cercle F G H
I, comprenant par tout buiet parties desdites diametres. Ie di que
lediit cercle sera tel qu'on demande, necessairement esgal au quarr-
ré propose & assigné.

11 C Se au tour d'un vrai quarré on produiit vn cer-
cle circunscript audiit quarré: toutes les lignes droi-
E.iiiij. ètes
Quatrième Chapitre,
êtes produitées dedens ledit quadré de chascun angle au milieu des costes opposites, sont nécessairement egalles a la quarte partie de la circumference dudit cercle.

S oit vn vrai quadré assigné A B C D : & soit vn cercle a luy circunscript A B C D. Le diuise chascune coste dudit quadré en deux parties egalles sur les points F, G, H, I. Et prodwis du point A deux lignes droites A G & A H : lesquel-les ie di estre nécessairement egalles a la quarte partie de la circumference du cercle A B C, lequel est circunscript au quadré interieur A B C D. Et ainsi est des autres lignes quand on les vouldra produire de chascun angle au milieu des costes opposi-tes, comme B I & B H, aussi C F & C I, Puis D F & D G. Et a esté ceste proposition inuentee ceste annee a ma requeste par vn de mes amis nommé Maistre Achaire Barbel natif de Ham, & demourant audict lieu, fort ingenieux a inentions nouvelles seruantes a la Geometrie. Et par ceste proposition se peut facile-ment quadrer tout cercle, & aussi circuler tout vrai quadré.

Pour resouldre toute ligne droite proposee en vn quadrant, c'est a dire en la quatriesme partie de la circumference d'un cercle.

Nous avons ayes montré comment le quadrant d'un cercle, c'est a dire la quatrieesme partie de la circumference, se doit

Pour mettre vne ligne droicte en vn angle, tellement qu'elle soit equidistante a vne autre ligne estant entre les lignes, comprenants ledit angle.

Ceste proposition sert a la precedente. Soit donques vne ligne droicte assignee A B, & pareillement vn angle droit C D E, dedens lequel soit vne ligne droicte F G. Si l'on veut mettre ladicte ligne proposee A B, dedes & entre les lignes C D, & D F, comprenants ledit angle, de sorte qu'elle soit equidistante
Chapitre Cinquième.

Ses ayons parlé des figures superficiales, autrement dites planes: il est temps de faire mention des dernières, & principales dimensions solides & corporelles, appelées corps Géométriques. Et premier fault parler des angles solides & corporels, lesquels sont commencement & principes des figures corporelles: comme en la propriété des superficies, les angles plats sont principes des figures planes & non corporelles. L'une science depend de l'autre: qui fect bien la propriété des angles plats, il peut facilement
De Geometrie.

1.
\[\text{tement scauoir la science & la proprieté des angles corporels & solides.} \]

2.
\[\text{Vn angle solide & corporel, ha pour le moins trois superficies, entre lesquelles il est comprins.} \]

\[\text{Vn angle plat, requiert pour le moins deux lignes concurrentes sur vn point. Aussi vn angle solide, pour le moins requiert trois superficies soy rencontrants & ioignants sur vn mesme point, comme ci apres sera declaré.} \]

3.
\[\text{L'angle solide & corporel, est en trois especes, c'est a scauoir droit, obtus, & aigu.} \]

\[\text{'Angle plat ha trois especes: aussi ha l'angle solide. Car il y ha l'angle droit, l'angle obtus plus grand que le droit, & l'angle aigu moindre que le droit. Comme l'on verra ci apres quand nous ferons mention de chacun apart.} \]

4.
\[\text{L'angle solide droit, est comprins & compose de trois angles plats droicts, eleuez les vns sur les autres, & soy ioignants en vn mesme point, qui est le coing & chef dudit angle.} \]

\[\text{Ceci appert clereinent en la presente figure, aiant trois angles droicts, A B C, C B D, & D B E; lesquels eleuez perpendiculairement les vns sur les autres, & soy ioignants sur le point E, feront vn angle solide & droit, duquel le coing & chef sera le point B.} \]

\[\text{Trois} \]
Cinquième Chapitre,

Trois angles d'un vrai pentagone joignets sur un même point, font un angle solide obtus, qui est l'angle d'une figure nommée Dodecédrone.

Comme trois angles d'un vrai carré qui sont droits, sont l'angle solide droit, qui est l'angle d'un vrai cube; aussi trois angles d'un pentagone régulier elevez l'un sur l'autre, & joignets ensemble sur un même point, font un angle solide obtus, lequel est l'angle espezial d'une figure corporelle nommée Dodecédrone, de laquelle ci après nous mention. Comme sont les trois angles pentagoniques A B C, A B E, & C B D, lesquels joignets ensemble font ledit angle solide, duquel le chef & coing est le point B.

Trois angles d'un vrai isopleure, font un angle solide agu, du corps nommé Tetracédron.

Angle d'un vrai isopleure, est naturellement agu, comme on a dit ci de là. Soient donc trois angles isopleuriques A B C, C B D, & D B E, sur le point B. Le dis que par leur eluation, & conjuntion sur le point B, sera fait & formé un angle solide & agu : lequel sera l'angle d'une figure corporelle nommée Tetracédron, aient buist angles agus.

Par qua
Par quatre angles isopleuriques ensemble joignets & eleuez l'un sur l'autre, est fait & compose vn angle solide & droit du corps nomme Octocedron.

Comme il appert en la presente figure, aiant quatre angles isopleuriques A B C, C B D, D B E, & E B F, joignets sur vn meme point B, lequel sera le coin & chef de l'angle solide & droit compose & cree par leur elevant. Et ledit angle solide sera propre & especial d'une figure corporelle & reguliere, nommee & appelée Octocedron : de laquelle sera ci apres faictte mention.

Par cinq angles isopleuriques, est cree & compose le vrai & regulier angle du corps nomme Icocedron, lequel est obtus.

Comme il appert clereement en la presente figure aiant cinq isopleures sur vn meme centre B, lequel sera le coin & chef de l'angle solide & regulier par euls compose & cree. Et sera ledit angle obtus, propre & especial a une figure corporelle & reguliere nommee Icocedron, de laquelle sera faictte mention en son lieu ci apres.

Six angles isopleuriques ne peuvent faire ou engendrer aucun angle solide.
Cinquièmè Chapitre,

Ceci appert en la presente figure, en laquelle les six angles isopleuriques faits sur le point & centre B, font un regulier hexagone ACDEFG, et remplissent tout l'espace qui est a l'enuiron & au tour du centre B. Paroquis ne se peuvent aucune-ment eleuer sur ledit point, pour faire l'angle solide d'aucune figure corporelle.

L'angle de l'isopleure, peut en trois manieres procéder: 1° angler solide & regulier: c’est a scauoir sur soy, sur le vrai quarré, & sur le pentagone.

Comme il appert en ces trois figures, dont la premiere ha trois isopleures sur un moien isopleure : lesquels par leur elecuation sur le moien, qui sera la base de l'angle solide, feront le regulier angle solide du Tetracedron. En la seconde figure, y ha quatre isopleures sur un vrai quarré : lesquels par leur elecuation, feront l'angle du corps dict & nommé Octoedron, & le quarré moien sera la base dudit angle solide. En la troisième, y ha cinq isopleures sur un moien pentagone : lesquels regulièrement eleuex, feront sur ledit pétagon l'angle solide de l'Icoedron. Paroquis l'isopleure peut en trois facons & manieres procéder angles solides: c’est a scauoir sur soy, sur le quarré, & sur le pentagone.
Six isopleures sur vn hexagone constituez, ne peuvent faire aucun angle solide.

Eci appert en la presente figure ayant six vrais isopleures au tour de l'hexagone ABCDELF : lesquels si on veult eleuer, ne pourront faire comble ne pignon hault sur ledict hexagone, ains reviendront cheoir en plat sur ledict hexagone, et seront esgauls a luy. Comme on voit clerement par les six triangles interieurs, qui sont esgauls aux six exterieurs.

Le vrai quarré, & aussi le pentagone, ne peuvent faire ne comprendre figures solides & corporelles, que sur soy melmes, & non sur autre figure plaine.

Ce propos est declare, en ces deux figures. En la premiere on voit quatre quarréz estants dessus un moyen quarré : lesquels par leur eleuation sur les costez du moien, feront la closture
Cinquième Chapitre,

la closeure d'une figure corporelle & reguliere nommée Hexacedron, autrement vn Cube. En l'autre figure faut entendre pareillement des cinq pentagones estants sur vn moien:lesquels par leur elevatiō, feront la moitie d'un corps regulier nommé Dodecedron. Autrement & les quarrez & les pentagones, ne peuvent faire ne coperdre figures regulieres;fors sur euls mesmes,& non sur autre figure. Car leur puissance est simple & unique. Mais celle du triangle est triple, comme il ba esté dict ci deffus.

L'hexagone tant sur soy, que sur autre figure, ne peut constiter aucune figure corporelle.

L'cause est, pour ce que six hexagones circuposez a vn moien hexagone a euls pariel & esgal, ne laissent aucun espace vuye:ains remplitent le tout. Parquoil lesdits hexagones ne peuvent avoir elevation sur le moien, pour faire & constiter aucune figure corporelle. Comme aussi nous dit ci deuant, que six isopleures au tour d'un mēme point moien,ne se peuvent aucunement eleuer, ne constituer angle corporel. Et par ces figures se peust facilement entendre tout le propos. On voit six hexagones A,B,C,D,E,F, a l'enuiron & au tour d'un pareil hexagone G, remplissant tous l'espace, tellement qu'il n'y ba rien pour faire leur elevation sur le moien hexagone, par laquelle se peust faire & constiter une figure corporelle.

Il n'y
Il n'y a que six espèces de figures solides & régulières: vne sphérique, & cinq angulaires.

Comme le cercle entre les plaines figures, est la plus belle & la plus naturelle: aussi est la sphère entre les figures solides & corporelles. Il n'y a que trois figures planes, par lesquelles se puissent faire & former les figures solides & régulières: c'est à savoir le triangle, le quadré, & le pentagone: car l'hexagone n'y peut de rien servir. Le triangle isopleure, peut se faire en trois façons & manières: le quadré en vne seulement, & le pentagone aussi. Parquoi n'y a que cinq espèces de figures solides, régulières & angulaires; lesquelles sont appelées Tetracédron, Octocédron, Icosocédron, Hexacédron, & Dodecédron.

Tetracédron est clos & enuironné de quatre isopleures.

Tetracédron est la moindre corporelle figure de toutes les autres: & est close & enuironnée de quatre isopleures, c'est a savoir de trois erigez en pignon, & de la base. Ledit Tetracédron ha six costez, trois monts en pignon, & trois en la base. Et ha aussi quatre coings, qui sont les chefs de ses quatre angles. Comme il est facile a voir & connoistre en la presente figure. En laquelle l'isopleure ABC, est comme la base: & les trois autres isopleures extérieures quand ils seront eleuez sur ladite base, & se iendront en hault en vn mesme point, ils seront le pignon dudit Tetracédron.

Octocédron est clos & fermé de huit isopleures: duquel le secteur diametral est vn vrai quadré.

Sur le
Cinquièmes Chapitre,

S

vr le quadré ABCD, on voit quatre isopleures esgauls : lesquels si l'on veult eleuer en pignon, par euls sera faict la moitie du corps Octoedron. Duquel le vrai & diametral secteur, divisant ledit Octoedron en deux espalles portions, sera le quadré ABCD, aiant une portion des jus, & l'autre des jous. Ledit Octoedron aura douze costez : c'est a seuoir quatre en haut, quatre au milieu, & quatre en bas. Et aura six angles : vn en haut, quatre au milieu, & vn en bas.

Octoedron est vn corps regulier, composé de trois portions, la haute, la basse, & la moienne : & ont chacune des extremes portions cinq isopleures, la moienne dix, & le tour vingt.

S

vr vn pentagone cinq isopleures eleuez en pignon, font une portion de l'Octoedron, soit la haute ou la basse. Car les deux extremes portiois sont pareilles, & d'une meme qualité & figure. Et si entre deux lignes equidistantes, comme sont les lignes AD, & BC, on fait dix isopleures, de pareille quantité & grandeur que les autres cinq esfins sur les deux pentagones : on fera la ceinture & moienne portion de l'Octoedron, laquelle se doit plier & tourner en telle sorte, que la ligne A B, vienne coincider & soy joindre a la ligne CD.
De Geometrie.

Hexacédron est clos & enuironné de six vrais quarrez: & ha en soy huit angles droits, & douze costez.

Exacédron (autrement cube) co tient au tour de soy six vrais quarrez, & huit âges droits, & douze costez: c'est a savoir quatre en hault, quatre en la base de bas, & quatre au milieu. Et est assez facile a cognoisire la nature & propriété dudit hexacédron: car il est fort commun, & plus en usage que les autres.

Le diametral secteur du cube, est un quadrangle non quarré: duquel l'un des costez, est le costé dudit cube, & l'autre est le diametre de tous ces vrais quarrez.

Le secteur diametral du cube ressemble a la ligne A B, divinant ledit cube du hault en bas en deux portiôes egales. Et est ledit secteur un parallelogramme longuet: du quel l'un des costez est le costé dudit cube, comme la ligne A C, ou D B, & l'autre costé est le diametre dudit parallelogramme, comme la ligne A B.

Le vrai diametre du cube, est le diametre de son secteur diametral, procedant d'un coing a son opposite.

Comme si le secteur diametral du cube est le parallelogramme A B C D, duquel l'un des costez, comme A B, ou C D, soit pareil aux costez du cube, & l'autre costé comme B C, F i j. & A D,
Cinquième Chapitre,

& AD, soient comme le diamètre de tous ses vrais quarrez; di que le vrai diamètre dudit cube sera la ligne BD, laquelle est le vrai diamètre de son secteur diametral, c'est à dire du parallelogramme ABCD. Et passera ledit diamètre du cube, d'un des coins parmi ledit cube, jusqu'as son opposite.

En vn vrai cube, y ha quatre diamètres passants par le centre dudit cube.

Estdits diamètres sont procedants des quatre angles & coins superieurs, iniques aux quatre angles & coins inferieurs, chacun a son opposite diametrément: & se rencontrent sur le vrai centre dudit cube.

Dodecédron est limité & clos de douze pentagones reguliers & esgauls, & se peut diviser en deux portions chacune de six pentagones.

Comme on peut clerement cognoistre par la presente figure, laquelle est la demie portion du vrai Dodecédron, aiat & contenant six pentagones reguliers, les cinq au tour & a l'environ du moyen inferieur.

Le vrai & regulier Dodecédron ha vingt angles solides, lesquels sont tous obtus, & si ha trente costez.

Dodecédron ha cinq angles solides & obtus en la portion superieure, & pareillement cinq angles en celle qui est en bas, & dix angles au milieu en la conjuntion des deux portions.
De Geometrie.

24 La sphere est close & terminée d'une seule superficie distante egalement du centre : la science de laquelle est pareille, & répondant à la science du cercle.

25 Quelle proportion y a entre les diamètres des sphères conférées ensemble, telle proportion y a entre leurs circonférences : mais la proportion de leur totalité ou capacité corporelle, consiste en nombre cubique a ladite proportion.

Vand ci deuant nous avons parlé des cercles & de leurs comparaisons, nous avons mise une pareille proposition : & n'y a difference, fors que la proportion des cercles est double & en nombre quarré a la proportion de leurs diamètres & circonférences. Mais entre les sphères, ladite proportion est selo le nombre cubique : c'est à dire, que si les circonférences & diamètres furent doubles les uns aux autres, comme deux à un, la plus grande sphère sera a la petite comme buit est à un. Car buit est le nombre cubi-
Cinquième Chapitre,
que de deux: pource que deux fois deux, font quatre: puis deux fois quatre, font huit. En nature doncques de cercle, le cercle C D, est quadruple au cercle A B, pource que leurs diamètres & circonferences sont en double proportion. Mais en nature spherique, la sphère C D, sera octuple & contiendra huit fois autant que la sphère A B. Car tout ains qu'en nature de cercles, il fault quadrer la proportion des circonferences & diamètres: pareillement en nature de sphère fault cubiquer ladite proportion. Comme la sphère E F, conferee a la sphère A B, contiendra vingt & sept fois autant que ladite sphère A B: pource que son diametre E F, est triple au diametre A B. Car le nombre de vingt & sept, est le vrai cube de trois. Et ains fault entendre des autres.

Toutes figures corporelles de pareille espece, estats les unes dedens les autres par esgal exces, sont en continue proportion de nombres cubiques.

C Estre proposition est fort belle & vtile, & generale a toutes especes de figures corporelles: & se peust facilement entendre par la proposition precedente, & aussi par celle que auôs mis des cercles, & a toutes figures plaines estants esgalle-

\[\begin{array}{c}
\begin{array}{c}
\begin{array}{c}
\begin{array}{c}
\begin{array}{c}
9
\end{array}
\end{array}
\end{array}
\end{array}
\end{array}\]

\[\begin{array}{c}
\begin{array}{c}
\begin{array}{c}
\begin{array}{c}
\begin{array}{c}
4
\end{array}
\end{array}
\end{array}
\end{array}
\end{array}\]

\[\begin{array}{c}
\begin{array}{c}
\begin{array}{c}
\begin{array}{c}
\begin{array}{c}
1
\end{array}
\end{array}
\end{array}
\end{array}
\end{array}\]

\[\begin{array}{c}
\begin{array}{c}
\begin{array}{c}
\begin{array}{c}
\begin{array}{c}
8
\end{array}
\end{array}
\end{array}
\end{array}
\end{array}\]

\[\begin{array}{c}
\begin{array}{c}
\begin{array}{c}
\begin{array}{c}
\begin{array}{c}
27
\end{array}
\end{array}
\end{array}
\end{array}
\end{array}\]

ment les unes dedens les autres. L'encyclie des cercles, se fait par les nom-
les nombres quarrez: comme sont vn, quatre, neuf, vingt cinq, trente six, & ainsi consequemment. L'encyclie des figures corporelles aians longueur largeur & profondeur, se entresuit & multiplie selon les nombres cubiques: comme sont vn, vingt sept, soixante quatre, & ainsi consequemment. Comme auons ci declaré en ces figures, lesquelles si l'on entend estre plaines, leur encyclie se conduit par les nombres quarrez, lesquels auont descripts tirant en haut: & si on entend qu'elles soient figures corporelles, ladite encyclie se doibt augmenter par les nombres cubiques, lesquels sont descripts tirant en bas.

27 Les inscriptions & circunscriptions des figures corporelles, & angulaires dedens ou au tour de la sphere, sont en telle & pareille proportion, qu'auons dict des cercles, & des figures angulaires.

Deux triangles disstés par l'interposition d'un mesmo cercle (comme sont A B C, & D E F) sont en quadruple proportion. Et pareillement deux cercles disstés par l'interposition d'un mesmo triangle entre deux. Aussi deux vrais quarrez distants par vn mesmo cercle interposé, sont en double proportion. Et pareillement deux cercles distés par vn mesmo quarre. Parquoi ie di que
Cinquième Chapitre,
les figures corporelles répondant aux dites figures angulaires, &
au cercle, comme sont le Tetracédon, & Hexacédon, & la sphère,
sont les unes aux autres en pareille proportion, par leur inscrip-
tion & circonscription.

DE LA CUBICATION DE LA SPHERE.

Chapitre sixième.

La cubication de la sphère, est pareille & répondant a la quadrature du cercle.

A sphère respond au cercle, & le cube au vrai quarré.
Parce qu'il est une mesme science de quadrer le cercle, &
de cubiquer la sphère. C'est a dire, de trouver un cube pa-
reil & essal a toute sphère proposee. Qui seait l'un, il seait l'autre.
Et si doit on aider pour cubiquer la sphère proposee, des figures
lesquelles auons premisses en la quadrature du cercle. Iadis n'estoit
trouvee la quadrature du cercle : aussi ne seauoit on la maniere de
cubiquer la sphère. Et estoit une mesme & pareille difficulté aux
anciens, laquelle a present est ostee.

Le perfaict tour & entiere resolution d'une sphère,
tournant sur vne ligne droictë: engendre vne rôde co-
lumne, cotenant quatre fois autant que ladite sphère.

Nous auons montré & figuré en la quadrature du cercle, que
la resolution entiere d'un cercle sur vne ligne droictë (com-
me si vne roe tournoit sur vne plaine) fait vn paralle-
logramme comprenant quatre fois autant que le cercle. Comme si
on entend le cercle ABCD, tourner sur la ligne AF, representant la
plaine: ie di que quand le point A retournera en bas sur la plaine,
& se viendra joindre au point F, la resolution entiere dudit
cercle fera le parallelogramme ACEF, cotenant quatre fois au-
tant que
tant que tout le cercle : & que toute la ligne AF, sera esgalle à la circonference ABCD : & chasun des quatre parallelogrammes esquels le grand est diuise, sera esgal au cercle. Parquoit faut ainsi entendre de la revolucion d’une sphere sur vne same ligne droite, laquelle en lieu d’un parallelogramme sera vne ronde columnne, representee par le parallelogramme AC EF : & sera ladite columnne quadruple à la dicté sphere, comprenant quatre fois autant. Et pour trouver les points de la revolucion de la sphere, faut faire ainsi que auons fait en la revolucion du cercle en diuissant le semidiametre en quatre parts, puis sous le cercle adjoignant vne quinte, côme l’on peut veoir en la precedente figure.

Pour trouver vne sphere esgalle au cube propose, faut faire ainsi que auons fait du cercle esgal au vrai quarre.

Nous auons donne la maniere de cuber ou cubiquer la sphere proposee : ici se propose le contraire, pour trouver vne sphere esgalle a tout cube propose. Et faut faire ainsi, que auos fait ci deuant du cercle & de la sphere en diuissant chasun costé du quarre.
Sixième Chapitre,
quarré proposé en quatre parties, puis par les extrêmes parties de
côtes coûté décrit à la cercle, lequel sera esgal au quarré proposé.
Comme il appert en la présente figure, en laquelle le cercle EFGH
IKLM, est esgal au quarré ABCD, qui estoit premier proposé.
Parquoi se faul ainsî régler qui veut sphériser un cube, c'est a
dire, pour trouver une sphère esgale à tout cube proposé.

1. Toute ronde colonne, de laquelle les bases sont esgales au cercle secteur de la sphère, & la haulteur
d'icelle esgale a la quatrième partie de la circonférence dudit secteur: est esgale a la sphère.

Le cercle secteur d'une sphère, est le cercle du milieu, divisant
icelle esgalement en deux: & se peust autrement appeler
l'horizon d'une sphère. Et est le plus grand cercle qui se
peust tirer dedens vne sphère: comme le diamètre est la plus grande
ligne qui soient dedens le cercle, divisant icelluy en deux parties esgales.
Les bases d'une ronde colonne, sont les deux cercles extremes, sur
lesquels elle repose d'un costé & d'autre. La haulteur d'une ronde col-
umn, est la ligne droicte estant perpendiculairement au milieu sur
ses deux bases, & appliquant a leurs centres: laquelle autrement se
peust appeller en Latin axis, ou le cateth de la sphère. Ce di donc-
ques, si vne ronde colonne ha les bases esgales a l'horizon ou au
cercle secteur d'une sphère, & sa
haulteur ou son cateth est esgal a la
quarte partie de la circonférence du-
dit secteur: que ladite colonne
sera esgale a ladite sphère. Comme
on peust voir en en cette figure, en la
quelle le cercle ABCD représente
vne sphère: & le parallelogramme

ACEF,
De Geometrie.

$ACEF$, représentera la ronde column esgalle à ladite sphere. Car les bases de ladite colûne seront entendues par les lignes AC, & EF, lesquelles seront esgalles au cercle $ABCD$ secteur de la sphere: & le cathet de la column sera représenté & entendu par la ligne du milieu, comme par GH, laquelle sera esgalle à la quarte partie de la circonference du secteur de ladite sphere, c'est à dire a la ligne AF, laquelle selon la quadrature du cercle sera esgalle à l'arc AD, qui est la quarte partie de la circonference du cercle $ABCD$.

5 La superficiale circonference d'une ronde column esgalle à la sphere, est double à toute la superficiale & exterieure circonference de ladite sphere.

Comme si vn tabourin, qui est figuré en ronde column, est esgale a une grosse boulle sphérique : ie di que la superficiale circonference du dit tabourin (comme le bois duquel il est vestu & tourné) sera double a toute la cloiture & superficiale circonference de toute ladite boulle sphérique a luy esgalle.

6 Toute la superficiale circonference d'une ronde column esgalle a la sphere, est esgalle a vn vrai quarté, duquel le costé est la moitie de la circonference du secteur de ladite sphere.

Eci appart clerement, pour ce que le cathet de ladite column est esgale a la quarte partie de la circonference du secteur de la sphere: & aussi est l'arc de la quarte partie du tour.
Sixiesme Chapitre,

du tour de ladite colonne. Parquoy l'entiere revolution de ladite ronde colonne, sur vne plaine, seroit qua-
tre vrais quarrez esgauls a toute sa superficiale circumference. Et de ces quatre vrais quarrez se peust componer un autre vrai quadré: comme est ABCD, duquel chas-
cuine des costez est esgall a la demie circumference, tant de la ronde colonne, que de la sphere a luy esgalle.

La superficiale circumference de toute sphere, est 7 esgalle a un parallelogramme longuet, duquel la un des costez est le quart, et l'autre costé est la demie cir-
cumference de son secteur.

Cette proposition est asses notoire par la precedente figure, car la superficiale circumference d'une ronde colonne es-
galle a la sphere (comme ia avions dit) est double a la circumference de ladite sphere. Parquoy la circumference & su-
perficiale couverture de la sphere, sera comme la moitie du grand quarre ABCD, lequel contient quatre vrais quarrez, & sa moi-
tie en comprend deux:lesquels vauldront autant & no plus,que la totale circumference de ladite sphere.

Si vne ronde colonne, & vne ronde pyramide font 8 de pareilles bases & de pareilles haulteurs: la colonne sera triple a la pyramide.

Comme
De Geometrie.

Comme si la colonne ABCD qui est ronde, & la ronde pyramide EFG, sont de pareille hauteur, & entre lignes equidistantes, & aussi de pareilles bases : il est de nécessité que la colonne ABCD, soit triple à la pyramide EFG, & qu'elle contienne trois fois autant. Le cathéter de la colonne, sera comme la ligne HI, appliquant sur les centres de ses deux bases perpendiculairement. Et le cathéter de la pyramide, sera comme la ligne KF, perpendiculaire sur le centre de sa base, & appliquant au pignon & coing de ladite pyramide qui est le point F.

La couverture & superficielle circonférence de la ronde colonne, est double à la couverture & superficie exteriere de la ronde pyramide.

Ce propos se peut facilement entendre par la présente figure : en laquelle le parallelogramme ABCD, représentant une colonne, est double au triangle AED, par lequel est représentée sa pyramide de pareille base, & de même hauteur. Et par ce appert clairement, que la couverture d'une ronde pyramide, est égale à la couverture & superficielle circonférence de la sphère, ayant le secteur égal à la base de ladite ronde pyramide. Car il est dit ci deuant, que la superficielle circonférence de la ronde colonne, est aussi double a la circonférence de ladite sphère. Parquoi celle de la sphère, & de la ronde pyramide, sont égales l'une à l'autre.

En
Sixiesme Chapitre,

En toutes figures angulaires, se peut être créer & construire pyramides & colonnes, lesquelles seront dénommées par leurs bases.

Toutes pyramides sont corps irréguliers, lors le tétraèdre. Et pareillement toutes colonnes sont irrégulieres, lors le cube nommé hexaèdre. Et se peuvent former colonnes & pyramides irrégulieres, en toutes espèces de figures angulaires : comme sur triangles, quadrangles, pétales, hexagones, tant réguliers que irréguliers. Et seront dénommées selon la nature & propriété de leurs bases, trianguaires, quadrangulaires, pétales, hexagoniques. Le seul tétraèdre est régulier pyramide triangulaire, close & fermée de quatre isopleures : & le seul hexaèdre est colonne réguliere quadrangulaire, close & fermée de six vrais quadrats à l'étour. Les autres colonnes & pyramides sont toutes irrégulieres, pour raison de leur inégalité.

Demandes sur les figures corporelles creuses, ou vaisseaux.

Comment se pourroient faire plusieurs vaisseaux en pierre, ou en bois, ou en fer, ou en autres matières, côte nants autât les vns que les autres, & de diverses figures.

E propos de prime face est difficile, & impossible aux ouvriers en quelque matière que ce soit : s'ils ne sauraient par l'art de Geometrie trouver leurs mesures. Car d'y procéder à tâton ou à l'aventure, ce seroit chose longue & trop fastidieuse : & n'y pourroient peruenir. Mais par ce que nous avons dict natures de la cubication de la sphère, & de la reduction de la sphère en cube, & pareillement de la colonne & de la pyramide : se pourra facilement faire, & trouver ce qu'on demande.

Comment
Comment se doit faire un vaisseau demi rond (comme un chaudron) esgal a un vaisseau ou bac, quadré de touts costez.

Ceci depend de la cubication de la sphère, & de seauoir la reduire la sphère en un cube: car la demie sphère ressemble a un chaudron, comme le cube ressemble a un vaisseau quadré. Et pour ce faire, il faut prendre les mesure (selon la doctrine precedente) de la sphère esgalle a un cube, ou au contraire d'un cube esgal a la sphère, & facilement on fera les deux vaisseaux tels qu'on demande, contenants autant l'un que l'autre.

Pareillement comme se feront deux vaisseaux esgauls, l'un en forme d'un tabourin, l'autre en figure pointue, contenants autant l'un que l'autre.

Ceci depend de la rôde colonne, & de la rôde pyramide. Car un tabourin, ou un seau, ou une boiste, tient la vraie figure d'une rôde colonne. Et un vaisseau pointue, tient la forme d'une rô de pyramide. Par quoi qui scait la propriete des deux & leur proportion, & les esgaler facilement fera ce qu'on demade. Et no seulement pourra faire deux vaisseaux tels que ici sont figurez, ou esgauls, ou en certaine proportion: mais en sera quatre, l'un comme un chaudron rôd coprenant demie sphère, l'autre comme un cube quadré tât en fond que de touts costez, les autres en forme de rôde colonne, & de rôde pyramide, comme l'on ha proposé en la demade & questio destusdicta.
Sixiesme Chapitre,

La couverture de la ronde pyramide ne se peut resfouldre en vn cercle entier, fors seulement en quelque portion de cercle.

Comme on voit en la suivante figure A B C, laquelle est une portion de cercle, et se peut plier en rondeur pour faire la forme de la couverture d'une tour, ou d'une ronde pyramide, de laquelle le pignon & chef superieur sera le point B, et les deux lignes A B, et B C, seront vne misma ligne. Vn cercle entier sans quelque petite bresche (comme est ici figuree la bresche D E F) iamais ne se pourroit tourn er en angle rond, ne a faire pauillon ou couverture de ronde pyramide, ne peruenir en pignon. Pareillement au contraire le pauillon ou couverture d'une ronde pyramide, iamais ne se pourra estédre ne resfouldre en vn cercle entier: ains seulement en la portion d'un cercle telle qu'il aduiendra, soit en vn quadrant, ou en demi cercle, ou en la plus grande portion du cercle, ou autrement.

D'autant que la portion du cercle est plus grande, d'autant est l'angle du pignon de la ronde pyramide plus large & plus obtus: & d'autant qu'elle est plus petite, d'autant ledit angle est plus estroit & agu.

Celci est facile a entédre. Quand vn apoticaire ou autre marchand taille son papier pour faire vn cornet a mettre poudre: d'autat que le papier sera en plus grade por
De Geometrie.

tion de cercle, d'autât sera ledict cornet plus large, & de plus grande capacité. Comme s'il plie seulement vn quadrant de cercle en figure de cornet, ledict cornet sera plus estroit & de moindre capacité, que s'il plie tout le demi cercle, ou autre plus grande portió. Et s'il taillef son papier en forme d'un cercle entier, il ne le scauroit tourner en cornet, selon ce que nous auòs dict en la proposition précédée. Car le cètre d'un cercle entier, ne peut faire angle ne pignon sur la circuferèce, s'il n'y ha bresche & ouverture pour tourner la portió du cercle en forme de cornet. On le voit aussi clereient en vne robe, laquelle bien depliée & estendue sur quelque plaine, se tourne en rôde figure: mais nô sans bresche, ne sans ouverture, laquelle ne fait vn cercle entier.

16 Si vn clocher en forme de pyramide rôde, est assis sur vne tour de pareille rondeur & haulteur ladict tour sera triple au clocher, & còtiendra trois fois autant.

Cette proposition est declaree & mife parauat, quac nous auòs dict, que toute rôde colûne est triple a sa pyramide, c'est a dire a la pyramide qui est pareille en largeur & en haulteur. Parquoi aussi vn clocher rond assis sur vne tour rôde de pareille haulteur & largeur, est la tierce partie de ladict tour. Comme s'il l'ò entéd la tour par le parallelogramme ABCD, & le clocher par le triangle BEC, qui soit de pareille haulteur a la tour, exprimez par les lignes FG, & GE, mesurez les haulteurs des deux: ie di que la tour ABCD, còtiendra trois fois autant que la pyramide du clocher BEC: & vauldra l'oururage tât en matiere que en salaire de l'oururier, trois fois autant.
Septième Chapitre,

Chapitre septième.

Le son & accord des cloches pendants en vn mème axe, est fait en contraires parties.

Les cloches ont quasii figures de ronnes pyramides, imperfectes & irregulieres : & leur accord se fait par regle Geometricque. Comme si les deux cloches C & D sont pendants a vn mème axe ou essieu A B : ie di que leur accord se sera en contraires parties, comme vous lez ici figure. Car quand l'une sera en hault, l'autre declinera en bas. Autrement si elles declinent toutes deux ensemble en vnne mème partie, elles feront discord, & sera leur sonnerie mal plaisante a ouir.

Le vrai accord de deux cloches par l'attouchement des batauls, est fait diametralement.

Chaque cloche bat deux divers costez, entre lesquels le batail touche par diversesfois. Et a cause que l'accord de deux cloches se fait par l'inclination d'elles en diverses & contraires parties : il faut que ledict accord se face diametralement.
De Geometrie.

le ment: comme voiez ci devant figure par un quadrangle rhomboide, & par quatre notes vulgaires, par lesquelles les enfants ou le côm un vulgaire signifient l'accord de deux cloches, disants (en imitant leur son) din, dan, ba, lan, din, dan, ba, lan. Les deux premières notes, comme din, dan, ne appartiennent à une même cloche, mais à diverses cloches, & à côtoires parties des deux, diamétralement opposées: comme les avons escript en leurs figures. Pareillement les deux der- nières notes sont de diverses cloches, & de diverses parties, selon la diamétrale opposition: comme l'on voit descript en la figure. Quand l'une des cloches d'un costé sonne din, l'autre de la contraire & diamétrale partie ressonne dan: puis la première respond ba, & l'autre en contraire costé ressonne lan.

3 Quand deux cloches sonnent ensemble d'un même costé, leur son est mal plaisant & mal accordant.

Come auôs ici pour- traiet en la présente figure, ou deux cloches sont agitées ensemble d'un mêmeme costé, comme en haut, ou en bas. Par ce moyen leur sonnerie n'est point diamétra le, ains se fait selon les costez opposées de leur quadrâgle. Parquoi ladîste sonnerie est irreguliere, & mal plaisante a oûr, a cause que lesdîtes cloches font confusion l'une auçques l'autre de leur son. L'on doit telle maniere de sonner cloches, comme dure & impertinente, euiter & fuir.

De l'allear de des cheaulaûls & autres bestes a quatre pieds, laquelle pareillement est diamétrale.

G.ij. L'allear
Septiesme Chapitre,

L’alleyre de toutes bestes aiants quatre pieds, comme de cheuals, garde mesure Geometrique.

La progression & alleyre de toutes bestes a quatre pieds, se fait non par les costez quadrangulaires, ains par les lignes diametrales.

Le descri vn quadrangle rhomboique ABCD, & par les quatre lettres des angles A, B, C, D, s’enté es être signifiez les quatre pieds du cheual. Le di que l’alleyre du cheual se fait non selon les costez A, B, & C, D, ne selon les costez A, C, & B, D: ains selon les deux diametres A, D, & B, C. Car le pied A (come antierieur & dextre & principal de toutes) se mouuera le premier, & marchera devant. Le pied D qui est posterieur & senestre, & a luy diametralement opposite, le suiura, & marchera le second. Puis le pied B antierieur & senestre, aura son mouvement.
De Géométrie.

Et le pied C a luy diamétralement opposé, marchera & se élèvera le dernier. Il y a une exception en cette règle, que le plein cours & le sault de la beste a quatre pieds (comme d'un cheval, ou d'un cerf, ou d'un chien) ne se fait diamétralement : ains selon les costez de devant & de derrière. Car les deux pieds de devant se mouuent ensemble, & les deux de derrière aussi. Comme on le voit à l'œil en toutes bestes allâts & chemins de plein cours, quand elles sont de pres hastées, pour s'y sauver. Le costé A B se mouvrera ensemble, & les deux pieds A & B également se leveront. Aussi le costé de derrière C D, suivra également le costé de devant.

6. Toutes bestes a quatre pieds, non sans cause ont les iambes de derrière plus longues que celles de devant.

On le voit clairement par tout. La cause est, pour la facilité & plus grande habilité de cheminer. On voit que pour imiter nature, on le fait ainsi artificiellement en un chariot: duquel les roes de derrière, sont plus grandes que les roes de devant, pour la plus grande facilité de cheminer, & pour le soulagement des chevaux.

7. La charge d'un chariot, est opposée & contraire à la disposition des roes.

Ar sur la roe de devant, on met la plus grand charge: & sur les roes de derrière, on met la moindre charge. Les plus petites roes sont les plus chargees, & portent G.iii. le plus
Septiesme Chapitre,

le plus grand fardeau.
Les plus grandes roes sont les moins chargées, & portent le moindre fardeau.

La charge d'un chariot se fait selon une pyramide renueersee, de laquelle la base & la plus grande partie marche devant, & le pignon ou moindre partie se charge sur le derriere.

Comme est la pyramide courte ABCD, laquelle en representation d'un fardeau a mettre sur un chariot, doibt avoir la plus longue ligne AB sur le devant du chariot, & la moindre ligne CD sur le derriere dudit chariot. Et qui le chargeoit au contraire, il seroit folle charge, qu'on dit vulgairement a tuecheual.

La disposition d'un chariot auecques sa charge, fait vn parallelogramme entier, diuise diamentralement en parties opposites.
di que a cè parallelogræme ressemble vn chariot auceque's sa char-
ge.Car le chariot qui est bas deuant & bault derriere, ressemble a la
partie inferieure A E F D: & la charge dudit chariot laquelle est
au contraire du chariot, plus large & plus grosse deuant que derrié-
re, ressemble a l'autre partie E B C F. Parquoil les deux ensemble
font la similitude du grand parallelogramme A B C D.

10 CVn homme aiant charge sur son dos, ressemble proprement a vn chariot, mettant la plus grande partie
dessus, & la moindre dessous.

Vn homme aiant charge sur son dos,
ressemble proprement a vn chariot: car il
met tousjours le plus pes-
sant & le plus gros bout
en bault, & le plus leger
dessous. Comme on voit a
ceuls qui portent la botte,
mettâts le plus pesât bout
au dessus, & le pignon de la
botte en bas: pour plus le-
gerement & habillement porter. Car si au contraire on mettoit le
plus gros bout dessous, & le moindre dessus: la charge seroit moult
penible, & seroit plus de peine a porter que autrement. Et si le por-
teur estoit abaisse comme vne beste a quatre pieds, aiant sa charge
sur son dos: il ressembleroit a vn chariot, aiant sur le deuant plus
grande charge, & la moindre sur le derriere.

11 C Toutes riuieres sortants de leurs fontaines, & cou-
rants en la mer, ressemblent aucunement a vne pyra-
G. iii. mide
Septième Chapitre,

mide, de laquelle la base est la mer, & le chef est la source de ladite fontaine.

Toit les rivières vont communément selon le cours du ciel, d’orient en occident, & sortent de petites fontaines. Puis par plusieurs eaux s’eslargissent, & en la fin s’en vont perdre en la mer. Parquoi les dictes rivières gardent la figure d’une pyramide, ayant sa base en la largeur ample de la mer, & le chef supérieur au destroict & source de sa fontaine. La mer est la base générale & univerfelle de toutes rivières, lesquelles sont produifées & engendrées de diverses fontaines, & vont toutes tumber & se perdre en la mer, comme en l’université & générale capacité de toutes eaux de l’univers sel mote. Et qui voudroit feindre & imaginer les fontaines à l’environ & au tour de la mer, il ferait desdictes fôtaines comme la circonférence, & de la mer comme le centre & abysme du mote, en laquelle toutes eaux vont prendre fin & terme de leur cours.

La grande encyclie du monde univerfel, tient la figure de ronde pyramide renuerfée, aiant la base au ciel, & le point capital en la terre.

Nous avions plusieurs fois dit, que c’est d’encyclie: quand les cercles sont les vifs dedens les autres, aiant vn mème centre. Et sur vn mème centre le monde univerfel est fait & formé en figure d’encyclie: car les corps inférieurs sont enclos & fermez dedens
De Geometrie.

dedens les corps superieurs. Tellement que les quatre elements sont colloquez dedens la machine des corps celestes, & l'un desdicts ele-
ments dedens l'autre : car la terre est au milieu de tout le monde.

Universel comme centre d'icelluy, l'eau au tour de la terre, l'air au

tour de l'eau, & le feu au tour de l'air. Ainsi est il des corps & or-
bes celestes, car les inferieurs & prochains ausdicts elements sont
dedens les superieurs : c'est a savoir au tour du feu le ciel de la Lu-

ne, & au tour de la Lune le ciel de Mercure, au tour de Mercure le

ciel de Venus, au tour de Venus le ciel du Soleil, au tour & sur le-
quel est le ciel de Mars, & au tour de Mars le ciel de Juppiter, &
au tour de Juppiter le ciel de Saturne, sur & au tour duquel est le

firmament, c'est a dire le ciel des estoilles fixes. Comme il appert par

la suiuyante figure, que nous auons ci adiouytee pour avoir plus fa-
cile & ample intelligence des choses proposees:

[Diagram of celestial spheres with labels for Firmament, Saturnus, Juppiter, Mars, Sol, Venus, & Lune]
Septième Chapitre,

Parquoi s'ensuit, en comprenant telle partie du ciel que l'on voudra, ou que l'on pourra voir & entendre, jusques à la terre, que la grande & universelle encyclopée de tout le monde, est formée & figuree en la maniere & façon d'une ronde pyramide, renouvelée qu'at a nostre regard & situation; de laquelle la base & siège ou fondement principal est audict ciel, & le chef ou pointe vertical en la terre: laquelle est le moins de tous les elemens & corps principaux, & avec ce, de petite & quasi insensible quantité & grandeur à la relation & comparaison de tout le ciel: est au milieu de tout le monde, representant le centre universel d'icelluy. Comme il appert aucunement par la presente figure pyramidal, deduict & procee de la figure precedente, & description universelle de tout le monde. Et ce sufficé quant a la grande encyclopée de tout le monde universel: laquelle on pourroit comprendre & figurer proportionalement en plusieurs façons & manières, es choses particulières de ce moede, dont je me tais pour le present. Par les choses d'oeques desitistées, il est clair & tresfeuident, que la perfection & dignité de la science de Geometrie est grande : attendu qu'elle reului si cleement & amplement en toutes les œures & choses que Dieu a creees en ce monde, mêmes en la dimension & proportion du corps humain, comme nous dirons ci apres.
Vi bien veult cognoistre la grandeur & stature de tout son corps: c'est a scavoir la vraie mesure depuis le hault de sa teste, iusques au bas de ses pieds: doibt estendre ses deux bras tant qu'il peut en droit & en croisse de son corps. Et la mesure de ladite extension de ses deux bras, depuis le bout du plus grand doigt iusques au bout de l'autre doigt, est la vraie quantité & dimensions de son corps. Ceste regle de Nature, se garde en tout corps humain, soit grand ou petit, soit geant ou nain, soit homme ou enfant. Car en chacun, selon la croissance du corps, aussi croissent les deux bras, gardant la naturelle proportion a la quantité & longueur de tout le corps.

Comme il appert evidentemment en la presente figure du corps humain, ayant les deux bras esté dus en droit fil: en la quelle la ligne A B, descendant du plus haut de la teste iusques au bas des pieds, doibt estre
Septième Chapitre,
esgalle & pareille en longueur a la droïte ligne C D, mesurant &
comprenant l'extension des deux bras en droit fil. Parquoï de ce
propos ferons ceste proposition.

La longueur & grandeur de chascun corps humain, est pareille & esgalle a la droïte extension des deux bras.

C'ombien que ceste proposition ait esté suffisamment dé-
clarée ci deuâti: nous ferons neantmoins ladiëte declara-
tion en formé geometrique, per l'intersectiô de deux lignes
droitëses. Sot doncques la ligne A B mesurant la baulteur du corps
humain, & la li-
gne C D soit l'ex-
tension en droit
fil des deuex bras
duist & mesme
corps humain. Le
dîsi il n'y ha mon-
struoité & desor-
mité & desfregle-
méte de nature au-
dict corps humain:
que ces deuex li-
gnes soy disants
sur vn mesme point seront esgalle l'one a l'autre, & de pareille
longueur. Comme l'experience le monstre en chascun homme: &
de ce ne fault demander raison Geometrique, ains plusfoist raison
naturelle. Car la diuine sapience (laquelle ha tout créê par raison
& bonne cause) ha faïet les bras au corps de l'homme & les mains
lesquelles on appelle en philosophie organa organorum, c'est à dire
organes.
organes des organes) pour secourir & environner tout le corps humain, & toutes les parties d'icelluy, a leur faire secours & aide a leur grand besoing & necessité. Tellement qu'il n'y ha aucune partie, ne aucun membre, auquel les bras & les mains ne puissent donner aide & secours : comme a le froter, grater, laver, oindre, nettoier de toutes ordures & vermines. Parquoy non sans juste cause Dieu autheur de Nature, ha voulu commensurer l'extension des bras a la dimension de tout le corps humain. Et de ce en avons voulu faire pour pasestems quatre petits vers en Latin.

Tetraestichon dimensionis humani corporis.

Quanta sit humani dimensio corporis, id vis
Nosse? tua in formam brachia tende crucis.
Linea quæ summos digitos extendit, ei est par
Quæ cadit à capitis vertice ad visque pedes.

La signification desdits vers est suffisamment exposée par ce qui a esté dit ci deuant : c'est a dire que l'extension des bras, de chacun homme, est pareille & estalle à la grandeur & dimension de tout le corps.

Les cinq principaux sens de l'homme, situez & organisez en la teste, sont par Nature disposez & ordonnez en figure triangulaire.

Les cinq principaux sens de l'homme sont, lesquels on appelle en Latin, Imaginatio, Auditus, Visus, Olfactus, Gustus. C'est a dire, l'imaginative, les ouies, la veue, l'odorement, & le goust. Lesquels sont situez posez & ordonnez par bôneur de Nature au plus bault de l'homme. C'est a scevoir l'imaginative, comme la plus noble, est situee au plus bault & sommet de la teste, en la rondeur.
Septième Chapitre,

rondeur du cerveau. Les ouies, sont posées & organisées aux oreilles. La veue, aux deux yeuls. Le sentiment ou odoroment, es nariaes. Le gout, en la bouche, ou en la langue située dedans la bouche. Et chasques de ces sens, ha son propre & naturel obiect, auquel il est ordonné. Car l'imagination ha pour obiect les apparitions, les visions, & phantasties nocturnes. Les ouies, ont le son, & la voix. Les yeuls, la lumière, & les couleurs. L'odoroment ha toutes les odeurs. Le gout, les saueurs. Le di doncques, que ces cinq sens honorables & baultains, situez & organisez en la teste, ne sont exemptes de figure Geometrique. Car l'ordre selon lequel ils sont naturellement posez & situez en la teste, garde & observe la belle figure triangulaire : laquelle est la premiere, & la plus mystique de de toutes les figures angulaires. Ce propos est bien & suffisamment déclaré par la presente figure : en laquelle on voit le sens interieur de l'imaginative, situé au plus bault de la teste, & en la roideur du test, courant le cerveau. Au dessous de luy, sont les deux oreilles,
oreilles, plus distantes que les deux yeuls. Puis au dessous, sont les deux yeuls, plus distants que les deux narines; et les deux narines plus distantes que la bouche, ou que la langue, laquelle est unique & simple organe du goust, pour ingérer de toutes saveurs. Ainsi voit on clairement, que les cinq sens selon leur situation observent la belle figure triangulaire, de laquelle la base est en l'imagination, & la pointe en la bouche, ou en la langue. Car de tant plus que un sens est parfait & vertueux, de tant plus sont ses organes distants l'un de l'autre, & plus estendus. Le goust est moindre & inférieur desdits sens capitaux; aussi est il comprins en un seul cercle de la bouche, ou en la simple langue. L'odorement a deux cercles pour ses organes, lesquels sont joignés & voisins, & coprés au nez. Les deux yeuls sont plus hauts & plus distants, que les narines. Et les deux oreilles plus hautes, plus distantes & séparées, que les deux yeuls. Et l'imagination, comme superieure & inferieur sens, est plus hauteur estendue que les oreilles: car elle est compris & contenue en tout le demi cercle du haut cerveau, qui représente en l'homme autant comme le ciel au monde universel. Ainsi appart que la Geometrie n'est de petite utilité, par laquelle on peult cognosire plusieurs choses dignes de se noir. Et n'est aucunement possible, que l'engin humain puist bien profiter en la philosophie & science des choses naturelles, sans l'aide des arts mathematiques: esquelles sont contenues plusieurs mystiques, sur lesquelles se sont fondez & reglez les anciens philosophes, pour inventer & decrire les occultes proprietez de toutes choses naturelles. Car comme on dit en proverbe philosophique: Species rerum sunt, ut species magnitudimum & numerorum. C'est à dire que les especes des choses naturelles, sont comme les especes des quantitez & des nombres.

Qui sceau.
Septième Chapitre,

Qui seauroit inuenter l'art de faire & composer vn cercle soy perpetuellelement mouuant & tournant, il pourroit faire vn molin tournant par soy sans aide d'eau, de vent, de bras, ou de cheval.

Hascun art ha en soy quelque difficulté, transcendant non la puissance de Nature, mais la seule capacité & subtilité de notre engin. Plusieurs ont iadis labouré & fait de grands despens pour trouver la maniere de composer & creer vn cercle soy perpetuellelement mouuant & tournant : & ce par les vertus & differences des contrepois inserez & si bien disposerez dedens la circumference dudit cercle, tant quil le feroient toujours par soymesmes tourner, sans aide exterieur de bras, de cheval, d'eau, ou de vent. Mais ce ne fut iamais bien inuentre, ne mis a exécution: ia soit que Nature a ce ne contredit. Mais la subtilité de notre engin n'y peust peruerir. Et si ce se pouoit trouver, on pourroit faire & creer tous molins a bon marché & de leger cost, sans necessité de vent, d'eau, de cheuauls, ou de bras humains. Et si telle utilité se pouoit trouver, il seroit a craindre que les Rois ou princes du temps present par envi de plusieurs ne feissent exterminer ou dechauffer l'inuenter : comme feit le cruel Domitien a celluy qui trouva le ligne & noble art de faire le voirre infrangible & malliable comme plomb, ou or, & argent : craignant que si le voirre estoit infrangible, il seroit preferé a or & argent, pour la ioieuse pureté & darte de luy.

Selon le cours de Nature, les molins a vent vont du dextre a fenestre, & sont consentants au mouuement du ciel.

Outs molins a vent, selon le cours & ordre de Nature, sont tournâts vers le coste gauche, qu'on dit en Latin A dextro in sini-
in sinistrum: C'est à dire, du costé dextre au fenestre. Lequel mouvement est pareil & semblable au mouvement du ciel: lequel selon les Philosophes se tourne journellement du costé dextre au fenestre, & d'Orient en Occident. Car l'Orient est la dextre partie du monde, l'Occident est la partie fenestre, & plus debile en generation de toutes choses que la partie dextre. Comme la femme est plus debile que l'homme, qui est la partie dextre de la nature humaine.

Le changement du vent ne peut changer ne transmuer ou desreigler le mouvement du molin a vent.

De quelque costé que vienne le vent, jamais le molin a vent ne change ne transmue ne desreigle son mouvement, tournant du costé dextre au fenestre. Car aussi artificielle met on tour ne ledit molin selon la venue du vent. Et pour mieux ce declarer, soit par deux diametres AB CD soy interessantes aux angles droits signifie le molina vet.
Septiesme Chapitre,

Et soit le point A, signifiant la partie senestre, & le point B, la partie dextre. Le di que par nature le molin a vent tournera toujours vers le costé A. Car le vent abaissera le point C vers A, & le point B vers C, & le point D vers B, & ainsi infiniment, sans jamais changer le tour accoustumé & pareil au mouuement du ciel.

Le vent rue toujours sur le molin par le hault costé, & non par le costé bas & inferieur.

Si le vent se iectoit & ruoit sur le molin par le costé bas & inferieur, comme sur le point D : le molin changeroit son cours naturel, & seroit desreiglé, tournant comme du point D enuers A : qui seroit du senestre costé, vers le dextre. Ce que faire ne se peust. Car le vent qui est leger, subtil, & de nature hauttain, touche toujours le molin par hault, comme sur le point C, l'enclinant vers le point A.

Le cours du molin a eau, est naturellement contraire au cours du molin a vent.

Selon
Selon l'ordre de nature, toutes les eaux terrestres, comme fontaines et rivières, ont leur cours d'Orient en Occident; pareil et consentant au mouvement du ciel. Par quoi tous les molins a eau, sur lesquels l'eau courant donne par le costé de bas, ont le cours contraire au molin a vent. Car les diéts tournent du costé septentrion au costé dextre. Comme il appert en cette figure: en laquelle l'eau venant de la fontaine E, vient aborder dessous le molin: et le fait tourner du costé D, vers A: et A vers B: et B vers C qui est du costé dextre, vers le costé septentrion: et du point de Orient, vers le point d'Occident: contre le naturel & journal mouvement du ciel. Il peut avoir en cette règle double exception. L'une, quand d'aventure l'eau vient du costé d'Occident, qui est chose rare, & non selon l'ordre de nature. L'autre, quand par faute d'abondance d'eau, on fait tenir l'eau & couler par un bac étant l'eau sur le molin, laquelle fait tourner le molin en la sorte du molin a vent, tirant du costé dextre au septentrion.
Comme il est démontré en la présente figure : en laquelle l'eau trembâtre par un bac sur le molin par le côté de haut, ressemble le vent faisant tourner le molin du côté droit vers le côté gauche, comme les molins à vent.

Les estats mondains sont à présent selon figures géométriques diverses par le rond et le carré.

Les estats mondains se présent distinction des estats mondains selon le rond et le carré : lesquels sont figures géométriques molles différentes et diverses. Car comme le rond est excellent, et le carré de moindre perfection ; aussi l'estat du bonnet rond, est plus ingénieux et spirituel que l'estat du bonnet carré. L'un gagne le pain, l'autre le despènd. Iuristes et toutes gens de sciences et de conseil, sont compris sous le bonnet rond, et sous la longue robe : les autres estats, comme gentilshommes et toutes gens de guerre, sont entendus par le bonnet carré et la robe courte.
L’accord & union des deux estats est en la deesse Minerue.

L deesse Minerue est dame des sciences; & si pareillement porte les armes, avec son escu nomé AEGIS. Elle porte d’une main la quenoille & le fuseau, & de l’autre main la hache d’armes. Par la quenoille & le fuseau sont signifiés gens d’estude & de science & de subtil engin: & par la hache & le bouclier sont entendus gens de force, & idoines à la guerre: en laquelle, force & vertu corporelle est plus requise & nécessaire, que n’est le haut savoir & la multitude de science. Plusieurs anciens Rois, seigneurs, & empeureurs, ont esté fort excellents en nature des deux estats: comme Alexandre le grand, Iulius Cesar, & autres, lesquels ont esté bien savants, & mout vertueux en guerre. Aucuns autres princes ont detesté & conteuné les sciences, disants qu’elles sont domestiques & feminines, ne servants sinon a enuer & amolir les coeurs des hommes, & les rendre non idoines a vertueusement imperer & guerres demener.

Les trois haults elements ont leur naturel mouvement selon les trois differences Geometriques,lon= H.iii. gueur,
Septième Chapitre,
gueur, largeur, & haulteur ou profondeur.

Les quatre elements mondains sont la terre, l'eau, l'air &
le feu. Lesquels sont par nature different: selon les pro-
prietez Geometricques: c'est a savoir selo le point, la ligne,
la superficie, & le corps. Le point est indissocioble, & de toute quaité
imperfect. La ligne ha longueur. La superficie ha longueur & lar-
geur. Le corps est en toute quaité perfect, ayant longueur, largeur,
& haulteur. La terre en soy ressemble le simple point: & est le ce-
tre & le fondement du monde, n'ayant en soy quelque mouvement,
& tourjours immobile. L'eau ressemble la ligne, ayant son cours se-
lon la longueur du monde, venant d'Orient en Occident. L'air qui
est agité & esmeu par les vents, ha son principal & regulier mou-
vement de la part du Midi en Aquilon:ou au contraire, de la partie
de Aquilon vers le Midi:qui est la largeur du mode. Car les prin-
cipauls & plus contraires vents du mode, sont le vent meridional,
soufflant vers Aquilon: & le vent qu'on dit le Nort, soufflant vers
la partie du Midi. Ces deux vents sont du tout contraires & di-
vers en proprietez:l'un chaund, l'autre froid : l'un pestilentieux &
pluvieux, l'autre salubre & pur, nettoyant le ciel de toutes nuises &
obscuritez. Pour laquelle cause les philosophes ont appelle & de-
nommé Scopam cieli, C'est a dire le ramon du ciel, nettoyant l’ho-
rizon celeste de toute ordure nubileuse: côme de couflume le ramon
ou balet nettoie la maison. Le feu qui est le quart & plus hault &
plus perfect element, ressemble la dimension corporelle: & ha son
naturel mouvement selon la profundité estendue du bas en hault.
Parquoyn non sans cause disons que les trois hauts elements,L'eau,
L'air, & le Feu, ont leur naturel mouvement selon les trois dimen-
sions & quantitez Geometricques, longueur, largeur, & haulteur.
L'aquelle chose en la philosophie est digne de consideration, ayant
sa secrete & mystique raison.

Le feu
Le feu par son mouvement du bas en
haut, tient & obserue la figure pyramidal.

On voit ce deceivedement a l'oeil.
Car en bas le feu se tient plus large:
& de plus qu'il chemine haut, il va a l'estroi
toet inques en pointe, tao que en son mouvement il cree & fait
la figure pyramidal:
laquelle entre les figures corporelles est la plus
noble & plus parfaite,
comme aussi le feu est de tous elements le superieur, & le plus noble & plus vertueux.

Le jeu de paulme se fait selon la ronde figure: Et le jeu de dets, selon la quarree.

Les estoefs & pelotes, & autres instruments du jeu de
paulme, sont de ronde figure, pour plus loing ieeter. Et les dets sont de la figure quadrre & cubique. La ronde figure est plus idoine a soy mouvoir, que la quarree, qui est plus stable & arrestee que la ronde. Par cette cause les anciens poetes ont escript que la Vertu stable & permanente, siedt sur le quarré:
& la Fortune inconstante & instable, siedt sur le rond:qui est trop facile a soy mouvoir, & n'ha arrest ne repos que sur un simple pointe.

H. iiiij. | La figure
On fait volontiers & le plus souvent les communes maisons selon la figure quadrée, pour la capacité d'elle, moulte plus vtile a habiter & demourer, que la figure ronde. Mais les fortresses des chasteaux, comme tours & places de guerre, se font selon la ronde figure: laquelle est plus forte, & moulte plus idoine a resister & bien garder côte les ennemis & aduersaires, que la figure quadrée ou angulaire, de quelque espece qu'elle soit.
Tous les conduits & pertuis du corps humain, tant pour la vertu attractiue que pour la vertu expulsive, sont par Nature de ronde figure.

La ronde figure est moult plus noble & de plus grande vertu que la quarree. Le monde est rond. Et a l'imitation du monde, Nature a ordonné à l'homme les conduits & pertuis de son corps en la ronde figure, tant pour servir a la vertu attractiue, que a la vertu inferieure & expulsive. En la teste de l'homme y ha quatre sens exterieurs, aiants leurs conduits & pertuis servant a la vertu attractiue. Le plus haute sens exterieur est l'ouie, aiant deux oreilles servant a fa vertu d'ouir les sons, & principalement la voix. Le second est la veue, aiant les deux yeuls attraiets la lumiere & les couleurs. Le tiers est l'olfact, aiant deux narines, pour attraire les odeurs. Le quatriesme sens est la bouche, ou gist le goust, a receuoir & attraire toute l'alimentation de l'homme, tant en boire que en manger. Et sont les pertuis & organes de ces quatre sens, formez en rondeur, pour la plus grande & expediente commodité de leur operation. Puis au ventre ou soubs le ventre de l'homme y ha trois pertuis servant a la vertu expulsive. Au milieu du ventre est le pertuis de l'umbilic, servant a quelque evaporation de l'air interieur. Au dessous est le pertuis genital, servant a la generation & expulsion de l'urine. Le dernier & inferieur pertuis, est a mettre bors les excrements de la viande, respondant a la terre. Car de ces trois pertuis inferieurs servant a la vertu expulsive, l'umbilic est comme l'air: le pertuis genital, comme l'eau: le pertuis excremental, comme la terre. Ainsi sont ces pertuis en belle proportion, & imitation des trois elements inferieurs, l'air, l'eau, & la terre. Le feu de l'homme, gist au coeur: qui est couvert, & sans quelque pertuis, pour mieuls faire la des-
Septiesme Chapitre,

côffion & digestion de toute alimentation, & la tourner en nature de sang, auquel gift & repose l’ame & toute la vie de l’homme.

Tous les pertuis de l’homme sont mystiquement distinguez par le nombre de sept.

En la teste de l’homme y ha sept pertuis, lesquels ne sont proprement que quatre, pour ce qu'ils sont servans aux quatre sens extérieurs: deux a l’ouie, deux a la veue, deux a l’olfact, & vn au goust. Puis au ventre ou dessoubz y ha trois pertuis ci dessus declarez: c’est a scauoir l’umbilic, le pertuis genital, & le pertuis excremental. Ainsi la vertu attractiue seant en la teste, ha quatre pertuis: La vertu expulsiue en ha trois: lesquels ensemble font le mystique & precieux nombre de sept, sur lequel Dieu ha le monde cree & perfait.

Les sept pertuis de l’homme sont en double ordre des quatre elements.

Le plus bas & inferieur pertuis de l’homme, nommé excremental, est comme la terre. Le pertuis genital, servant a ieuster l’urine, est comme l’eau. L’umbilic, seant au milieu du ventre, est respondant a l’air. Le coeur, seant au milieu de la poitrine, & n’ayant quelque pertuis, mais eustant secret & couvert, ressemble au feu. Puis en la teste le goust, servant a la vian de materielle & terrestre, est comme la terre. L’olfact en ses deux pertuis par lesquels sortent plusieurs humeurs, ressemble a l’eau. La veue respond a l’element de l’air. L’ouie, qui est le plus hault & plus perfait exterieur sens de l’homme, est respondant & pareil au feu. Parquoi les pertuis de l’homme, comprins avec le coeur secret & inferieur, sont en double ordre des quatre elements: comme nous avons propose & declare.

Toute
Toute la substance du corps humain est compris en trois grands orbes, qui sont, la teste, la poitrine, & le ventre.

La substance du corps humain se peut mystiquement & par bonne cause distinguer en trois grands orbes. En l'orbe de la teste : dedans lequel sont coprés les quatre sens extérieurs, & leurs pertuis & organes servant à leurs operations en la vertu attractiue. L'orbe moyen est la poitrine, close & fermée, n'ayant en soy quelque ouverture ou pertuis ; tenant le coeur, & les entrailles servant à la digestion & génération de sang. Le tiers & inférieur orbe est le ventre, ayant en soy trois pertuis distingué en la proportion & similitude des trois inferieurs elements ; de la terre, de l'eau, & de l'air.

Instance & obiect.

Il fut iadis vn Roi d'Espagne, nommé Alphonse, assez facetieux & joieux. Ledit faisait vn joieux obiect, disant pourquoi Dieu n'avoit fait vn pertuis & ouverture en l'orbe moyen du corps humain, c'est a savoir en la poitrine, pour la santé de l'âme, à fin de bien nettoier l'estomac & les entrailles, & à la main purger & ober toutes
Septième Chapitre,
toutes nuisances & corruptions interieures. Il disoit pareillement
que Dieu debuoit mettre le gras des iambes qui est par derriere,
au devant: a fin de mieuls defendre les os quand on chemine, con-
tre le burt faisant grande lesion aux os, qui ne sont gueres bien ve-
stus par devant. Car ladite greffe les eut mieuls defendus par
devant que par derriere. Telles estoient les instancies & objections
facetieuses dudit Roi Alphonse. Lesquelles ne sont dignes de re-
sponse, ne de raison, entant que contre la divine sapience nul ne
doibt rien presumer ne contr'arguer. Car comme dit la sainte escri-
pture, Fecit Deus omnia & bene, & bona valde. C'est a dire, que
Dieu ha faict tout & bien, & fort bon.

[Question & demande.]

Pourquoi Nature ha donne puissance a l'hôme de
plus facilement fermer les yeuls & la bouche sans
l'aide des mains, que les oreilles & les narines, lesquel-
les sans l'aide des mains ne se peuvent fermer.

Il est facile de fermer les yeuls & la bouche sans l'aide des
mains: mais les oreilles & les narines ne se peuvent aucun-
ment fermer ne estouper sans l'aide des mains. Nature ha ce
faict: car les yeuls & la bouche sont tendres & dangereux pertuis,
Par la bouche, se elle demouroit ouverte de nuit & de iour, pour-
roit legerement entrer au corps chose nuisible & creant maladie &
inconuenient. Aussi les yeuls sont precieux, tendres, & fort dignes;
pour lesquels mieuls garder, Nature ha donne vertu a l'homme de
les facilement ouvir & couuir, tant de nuit que de iour. Si grand
danger ne pend aux narines, ne aux oreilles: lesquels sont plus se-
crets, & plus profonds en la teste que la bouche & les yeuls.

[Comme la stature de l'homme est composee de trois
orbes principauls, aussi sur le regime de l'homme sont
trois justices: la basse, la haute, & la moienne.]
De Geometrie.

L est declaré ci dessus comment la figure de l'homme est composée de trois orbes, de la teste, de la poitrine, & du ventre. Et sur ces trois orbes ha au regime & gouernement de l'homme trois justices, la basse, la moienne, & la haulte. La basse est situee sur l'orbe inferieur, chassant de verges les petits enfants. La moienne est sur l'orbe moien: c'est a sçauoir sur le dos, opposant a la poitrine. Et est pour les serviteurs de la maison, lesquels on chastié d'un baton sur les os. La haulte justice est sur l'orbe superieur de la teste, pour les enfants incorrigibles, quand ne par verges ne par baton ne se veulent amender, & leur faut par le pendant donner l'execution de la mort.

Les trois justices de l'homme, sont ioieusement & visiblement coprises sur les trois parties d'un ramon ou balay. En Picardie on appelle vn Ramô, ce que les Parisiens & Francois ont aoustume de nommer & appeller vn Balay. Chascun sçait que c'est, & a quoi il sert en la maison.

L est compose de trois parties. Premier, du ver & menu bois: puis, d'un long baton servant de maine: puis, du lien ou bart liant & estraignant le menu bois au maine. Parquo on peut dire que les trois justices humaines sont ioieusement contenues & exprimées sur le Ramon. Car le ver & menu bois sert souuent a faire verges, pour chastier & corriger les petits enfants, tant en leur maison que a l'eschol. Et ce signifie la basse justice sur l'orbe inferieur de l'homme. Le baton signifie la moienne justice, chastié d'un baton les grands garsons & varlets sur leur dos. La bart signifie la haulte justice, estraignant le col des enfants ou serviteurs incorrigibles, lesquels ne pour verges ne pour batons ne se veulent améder & mieuls valoir. Et ce est demonstré aues clerement par la figure du Ramon: & aussi par ce present rythme, declarant le tout plus au long.

Les trois
Les trois justices sur le Ramon
ou Balay.

Trois choses sont en un Ramon,
Bien ordonnées par raison:
La barre, le manche, et le menu.
Par ces trois l'homme est maintenu.
A bouffer cul sert le menu.
Des bons enfants criants bu bu.
Le manche a bien frotter les os.
Du gros varlet dessus son dos.
La barre à pendre le larron.
Qui ne craint verge ne baton.
Ainsi avons en la maison
Trois justices sur le Ramon.
La haute, moïenne, & la basse.
Qui ne fait bien, fault qu'il y passe.
Hautte justice estraint le col.
La basse escorche le cul mol.
La moïenne frotte le dos.
Des gros varlets, quand ils sont sots.
Qui ne s'amende par le bas,
Ne gardant règle ne compas,
D'un gros baton ou d'une gaule.
On luy doit bien frotter l'espaule.
Par batre dos s'il ne s'amende.
De Geometrie.

De hat au col le fauldra pendre.
Par quoi Ramon est chose digne.
De mieuls seruir qu'en la cuisine.
Il ha office a purger vices.
Par la rigueur des trois iustices,
En rendant l'homme ou bon ou mort,
Bon par vertu, mort si il ha tort.

34 Een mettant l'horizon du ciel au quarré, selon les quatre principauls vents du monde: la moitié dudit quarré est salubre au corps humain, & la moitié infalubre.

En distinguant l'horizon du ciel par le quarré, selon les quatre principauls vents du monde: les deux costez dudit quarré, c'est-a-scœoir le costé d'Orient & le costé du froid vent Aquilon, sont plus salubres & mieuls profitables a la santé de l'home,que les deux autres costez du Midi & d'Occident.

Parquoil la moitié entiere dudit quarré est salubre et mois viyle a habiter:
& l'autre moitié plus salubre,
& viyle a demourer.Comme se le quarré mo-dain est entedu par A, B, C, D:
les deux costez

\[\text{Diagram: } \text{AQUILON, OCCIDENT, ORIENT, MIDI.} \]
Septièmes Chapitre,

A B & B C, qui sont A B oriental, & B C aquilonaire, seront plus salubres que les deux autres C D & D A. Parquoy en protéant dedens ledit quarre le diametre A C, tout le triangle A B C, qui est la moitie entiere dudit quarre tant oriental que aquilonaire, sera salubre. Et l'autre triangle A D C meridional & occidental, sera de moindre utilité pour habiter. Parquoy en une maison signifie & entendue par le quarre A B C D, faudroit faire les fenestrers du costé oriental & du costé aquilonaire: & laisser les deux autres costez fermez sans quelque fenestre & ouverture. Sur ce propos faut consulter les Philosophes ou Medecins, congnoissant la disposition de l'air, & les diversites des quatre vents venants des quatre parties de tout le monde.

Toutes les lettres de l'alphabet ou Abecedaire Latine, se peut facilement reduire au quarre, & au rond.

Les principales & plus frequentes & utiles figures sont le quarre & le rond, servus à plusieurs choses. Et qui les veut bien considerer & regarder, il pourra facilement reduire toutes les lettres de l'alphabet ou Abecedaire Latin, au quarre & au rond.\n
n o b c d e f g h i
k l m n o p q r s t u x y z

Et ce est en l'experience & volonte de chacun. Comme ci dessous ayons figure & mis toutes les lettres ou au quarre, ou faictes & composees...
De Geometrie.

Les lettres mises au rond, sont composées ou de cercles entiers ; de
un où de plusieurs, ou du quart ou de la moitié de la circonférence.
Et tout ce propos se peut rapporter au plaisir & à la volonté de
l’escrivain.

L’entendement & la mémoire de l’homme, sont dis-
tinguez selon la ronde figure & la figure angulaire.

Es deux principales vertus de l’homme, a comprendre &
retenir toutes choses qu’il apprend, sont l’entendement &
la mémoire. L’entendement est le premier qui acquiert &
comprend tout. Et la mémoire ensuit, laquelle tout ce que l’entende-
ment sa compris, bien retient. Par quoi ces deux spirituelles ver-
tus de l’ame, sont en proprieté de diverses figures Geometriches.
C’est a sceoir de la figure angulaire, & de la ronde. On dit vul-
gairement & communément, que le plus agu entendement est le meil-
leur, & le plus habile a penetrer & a comprendre toutes choses.

I. j. Et
Septiesme Chapitre,

Et par contraire proprieté, & en derision de ceuls qui ont lourd gros & inhabile entédement, on dit qu'ils ont l'engin aussi rond que une boule, ou que le cul d'un chauderon: signifians par ce, que leur entédement est impropre a penetrer & a comprendre plusieurs choses.

Et par diverse & contraire figure fault parler de la memoire.

Car memoire ague & angulaire ne vaut rien, pour son incapacité inhabile a plusieurs choses retenir & en soy conserver. Et ronde & large memoire est la meilleure, & de grâde capacité a retenir en soy & conserver tout ce que l'agu entendement comprend & apprend.

Et a ce propos le peuple vulgaire ha souuent cette presente ryme en la bouche:

Ronde memoire, agu entendement,

Fait l'homme habil, discret, sage, & prudent.

Et par le contraire dit:

Memoire ague, & rond engin,

Rend l'homme simple, & non fort fin.

Et par cette mesme cause voit on aussi advenir, que ceuls qui ont petite teste, par l'incapacité du cerueau auquel est situee la memoire, ne sont bien sages, mais legers & indiscrets, qui ne veult dire fols. Et ceuls qui ont la teste plus ample & de moienne grosseur, sont plus sages & de meilleur cerueau, & en touts affaires discrets & bien aduisez: L'art de Phystonomie sur ce propos peut exposer la cause, & donner la raison.
Les utilitez & excelléces de Geometrie.

Huitiéme Chapitre.

Vi veut amplier & magnifier la grande & inestimable utilité de l'art de Geometrie, il doibt considerer le service & le bien qu'elle fait a toute l'Astrolgie: laquelle selon la hauteur & excelléce de ses objets, c'est a scouoir des corps celestes, est estimee & reputee la plus haute & la plus noble entre les arts liberales, lesquelles sont distinguées selon le nombre de sept. Les quatre principales arts liberales sont, Arithmetique, Musique, Geometrie, & Astrologie. Arithmetique est la première, & la plus secrete, & plus mystique de toutes: a cause de la contemplation des nombres qui sont secrets & situez en l'esprit de l'homme. Musique est sur toutes la plus ioieuse & recreative, dependant de l'Arithmetique, pour cause que toutes harmonieuses & delicieuses consonances sont situees en comparations des nombres. Geometrie est entre toutes la plus utile, & servant a plusieurs choses: & principalement a l'Astrolgie, laquelle ne peut rien sans la premission de Geometrie. Et de ce se peut facilement donner la raison.

L'Astrolgie est scrutative des orbes & spheres celestes, considérant leurs mouvements, leurs distâces, leurs conjunctions & oppositions, leurs hauteurs & spissitudes, leurs centres, circonférences, & diamètres. Lesquelles choses ne se peuvent aucunement scouoir sans l'instruction de Geometrie, en laquelle on determine tous ces propos par leurs definitions & raisons.

Les Astrologiens dient que toutes les estoilles sont situees au huitiéme ciel nomé le Firmament, & que la moindre estoille visible, est plus grande six fois que toute la terre. Ce ne se peut bien connoistre ne scouoir, sans avoir premiérement par art de Geometrie.
Huitième Chapitre,
la mesure & la quantité de toute la terre, tant en sa circonférence que en son diamètre.

La vue de l'homme se termine au firmament par l'aspect & intuition des étoiles ; par dessus lesquelles n'y a plus quelque luminaire modain lequel on peut voir & a l'œil percevoir. Et y a plusieurs étoiles lesquelles on ne peut voir à l'œil, car elles sont de moindre quantité que les étoiles visibles transcendants la quantité & grandeur de toute la terre.

Les sept Planetes sont tous visibles, & singuliers & solitaires chacun en son propre ciel, comme un grand seigneur en sa maison. Car ce sont les hauts seigneurs & gouverneurs du monde, lesquels pour leur dignité & maîsté, veulent être chacun seul & unique en sa propre maison.

Les Astrologiens diient que le Soleil est cent soixante-six fois plus grand que toute la terre. Ce dit est fort incredible aux gens vulgaires, estimant la grandeur du Soleil seulement selon le jugement de l'œil, auquel semble le Soleil n'estre plus grad que vn grad plat, ou vn yan. Mais par l'aide de Geometrie, en mesure les diamètres & hauteurs des orbes celestes, l'engin & l'entendement ha autre jugement que l'œil, lequel ne iuge selon le vrai. Thales Miletus l'un des sept sages de Grece, diroit que le Soleil estoit sept cents vingt fois plus grand que la Lune.

L'entendement iuge la terre en comparison des orbes celestes estre de nulle grandeur, mais comme un simple point & centre de tout le monde. Il iuge la Lune estre plus petite que la terre, & la plus basse des Planetes : disant aussi & iugeait que tous les Planetes (fors la Lune) sont plus grands que toute la terre. Et a ce seauoir, est requise l'art de Geometrie.

Les eclipses du Soleil & de la Lune se font par les diametrales conjunctions & oppositions desdits Planetes. Car quand la terre est entre
De Geometrie.

est entre le Soleil & la Lune diametralement interposée, aduient l'eclipse de la Lune: laquelle pour l'obscurité de la terre, ne peut recevoir la lumière du Soleil, & se démontré obscure. Et quand la Lune est directement sous le Soleil, empêchant la vue du Soleil, si que l'œil humain ne peut entièrement voir le Soleil: adoncques est l'eclipse du Soleil. Et ne faut entendre que en ce cas le Soleil perde sa lumière. Car il est toujours luisant, serre, & ardant au ciel. Mais l'interposition de la Lune estant de par soy obscure, empêche la veue & le regard du beau Soleil.

Huitiémes Chapitre,

telles ici figurez : esquels le Soleil & la Lune sont en regard de conjun&tion & d'opposition, aients en telles situations diverses vertus & influences a produire divers effets. Se deux ou trois Planetes sont en situation triangulaire, comme les points A & B, ou B & C, ou A & C ; par la raison du triangle ils ont autres vertus qu'ils n'ont en l'aspect tetragonique ou pentagonique ou hexagonique, a produire au monde inferieur ou bien ou mal.

Les Astrologiens dient que chacune Planete (sauf le Soleil) a trois mouvements : l'un impropre, par l'excellence & vertu du mouvement du plus haut ciel, lequel est nomé en Latin Primus mobile, C'est a dire, le premier mouuait : lequel en chascun jour naturel coteant xxxiii. heures, tourne au tour de la terre d'Orient en Occidet : & emporte & tire aucques joy tous les cieux inferieurs, tant le Firma ment aiant en joy les escoille, que les sept Planetes solitaires en leurs maisons. Le second mouvement des Planetes, est leur propre & special mouvement chascun en son ciel tournant contre le premier de l'Occident en Orient, & en divers temps. Comme la Lune, en xxxvii jours : le Soleil, en vn an : & les autres, selon la diffi nition d'Astrologie, quasi en vn an, ou en xxxvii, ou en trente ans.

Le tiers mouvement desdits Planetes (excepte le Soleil) est par leur epicycle, dedens lequel ont vn singulier mouvement d'Orient en Occidet & ce non au tour de la terre, mais en la spissitude de leur propre ciel, contenant en joy l'orbe de l'epicycle, dedens lequel se moeit l'orbe de la Planete eccentricement a la terre.

Le seul Soleil est exempt de tel mouvement : Car il n'ha point d'epicycle. Et se moeit plus simplement que les autres en son simple ciel. Ce qui d'ente & signifie la grande perfection du Soleil, comme joy mouuant par joy mesme, sans indigence d'epicycle ou organe materiel, & en cas representant en l'homme le mystere de la raison, & de l'entendement : lequel, comme la principale connoissance humaine,
De Geometrie.

humaine, se moeut & fait son operation subtilement & secretement, sans l'aide & indigence d'organes materiel : & suit toujours le vray moien, sans aucunement errer & deuier. Mais les cinq sens de nature & l'imagination, representants les six Planetes errants & deuians en la latitude du Zodiaque, ne se peuuent par soy mouuoir ne faire leurs opera-
tions sans l'aide & indigen-
ce de l'organes materiel, repre-
sentant l'epicycle des Plan-
etes, lesquels ne se peuuent mouuoir sinon dedens leur
epicycle, auquel ils sont ec-
centricques & de centres di-
uers. Comme se le ciel de la
Lune est signifie par A, &
son Epicycle par l'orbe B, &
le corps de la Lune par le
petit orbe C eccentricque a l'orbe B, & soy mouuant dedens luy.

Ici avons fait une petite euagation, pour demonsttrer & faire
apparoir euidement que l'art d'Astrologie est fort subalterne a
la Geometrie, & que sans son aide & vile permission elle ne peut
rien. Comme aussi est la Musique subalterne a l'art d'Arithmeti-
que, a cause des numerales proportions, esquelles sont contenues &
fondees toutes les consonances necessaires a la Musique.

Pareillement est l'art de Perspective subalterne & subieete a la
Geometrie. Car ladite Perspective est comprise sur l'art des
mirouers, & sur la reuerberation, & direction des rais visibles
echant de droit ou soy reciprocants en l'oeil. Laquelle chose ne se
peust biel cognoistre, sans scouoir par Geometrie la nature des angles
droits & obliques, & des lignes epediculaires & non epediculaires.

I. iii

Il y a
Huitième Chapitre,

Il y a un art singulier nommé De ponderibus, c'est à dire Des pois servant à contrepeser toutes choses qu'on veut. L'art est situé sur la balance, nommée en Latin Bilanx. Et est l'instrument ordinaire fait à tout contrepeser. L'art en égalité des pois observe les angles droits, tant de l'examen sur les deux bras, que des bras à leurs dépendances. Et quand il y a inégalité & obliquité, de la contre-pesanteur; les angles, tant de dessus que de dessous, sont obliques & inégals. Par quoi l'art se démontre clairement sujet & subalterne à la Géométrie, donnant à cognos-

C'est que vous entrez en la matière & mention des pois, feras une loyauté évagation, pour recreer & ressouir le lecteur. C'est que les deux supérieurs éléments, l'air & le feu, montants naturellement en haut, ne se peuvent peser, ne discerner par la raison du pois. Car ils sont légers, & n'ont quelque pesanteur. D'où ce prouvre Latin: Fumê, aut aerê, aut vaporê, aut nubê in statera appêdere. C'est à dire: Mettre la fumée, ou l'air, ou vapeur, ou la nuée en la balance. Qui signifie faire chose superflue, ri-

dicule,
 difficile, & impossible. Les deux éléments inférieurs, l'eau & la terre, sont naturellement pesants, & en bas des descendants dont plusieurs voulaux discerna la bonté de l'eau, la font peser, disant que la plus légère eau est la plus saine & la meilleure pour le corps humain. Comme l'eau de pluie, est par les médecins reçue plus légère & plus saine que l'eau terrestre : l'eau de rivière, meilleure que l'eau de puis, ou d'un étang : les eaux orientales, plus légères que les occidentales : & les eaux méridionales, plus saines que les aquilonaires. Et ce aduent pour la prochaineté du Soleil, rendant les eaux voisines plus légères & plus salubres pour le corps humain. L'eau de la mer est grosse, pesante, terrestre, & sale, dont elle se rend inutile & insalubre à faire bruage & humaine potion.

Et ia soit que en la nature de discerner la valeur de plusieurs biens, la légereté soit préférée à la pesanteur : ce neantmoins y a il grande exception. Car plusieurs biens de terre sont mieuls estiméz & plus prifez par le pois excellent, que par leur légereté. Comme il aduent en la nature des metauls & des pierres, lesquels on prifz plus au pesant que au léger. Et aussi en la nature de bois : Car le bois tant plus est pesant & plus compaç, tant est il meiileur ou a ouvrer, ou a bruler & a produire cendres.

Le bois de Gaiaç, lequel a present est en grand bruit, pour la medecine qui en sort vitile à plusieurs maladies, est si compaç & pesant, qu'il descend incotinent comme une pierre au fond de l'eau : & ne peut sans l'eau nager, comme sont les autres bois. Et est si gras & succulent, que incotinent il prend la flamme, & brule comme une chandelle.

Les extremes viandes qu'on met de coutume à la table des gës de bien, la premiere est le pain, la derniere le fromage, lequel les Espagnols mieuls que nous appellent le fermage : a cause qu'il ferme la table & l'estomac, & est le mes dernier. Ces deux extremes viandes
Huitième Chapitre,

viandes ont leur jugement de bonté par le plus léger, & le plus pesant. Le pain par le léger, & le formage par le pesant & le plus compact, dont les communs Latins en forme de proverbe dient joyeusement, Panis oculatus, & Caseus cæcus. C'est à dire que le pain œillé, clair & rare, & le formage aveugle & bien pressé, sont les meilleurs. Dont par contre déraison dient, Caseus Aragus, & panis cæcus, insalubres, C'est à dire Formage voit clair & œillé, & Pain pressé & aveugle, ne sont fort bons.

Aussi communément deux fruits sont qu'on met souvent à l'issue de la table, c'est à savoir la pomme & la poire: lesquels en leur bonté sont différents comme d'ailleurs par le léger & le pesant. La pomme par la ronde figure & par le léger se juge la meilleure : & au contraire, la meilleure poire est la plus pesante & plus pyramidalement de laquelle figure aussi elle porte son nom.

Et pour faire fin sur le propos de la Geometrie, duquel sommes sortis, Archimedes natif de Syracuse en Sicile, par le moyen de la dite art en laquelle estoit fort ingénieux & excellé, defendit long temps ladite ville de Syracuse contre la puissance de Marcus Marcellus Consul Romain. Ledit Consul ayant commandé à tous ses gens, que quand la ville seroit prisée, qu'on ne fût quelque mal audict Archimedes, mais qu'il fût gardé vivant, a cause qu'il s'en voulut servir & aider. Mais par mespris & inadven- tice d'un chevalier, en la chaude victoire fut ledict Archimedes en sa chambre tué : dont Marcellus fut fort marri, & luy fit faire vn sépulcre beau & magnifique hors la ville, auquel il fit son corps poser, & de ses vertus intituler. Et il est que ledict Ar- chimedes fut grand & subtil Geometrien, neantmoins il ne sceu l'amais venir à bout de trouver & inuentar la quadrature du cercle, ia soit qu'il rendit grand pene a la trouver: laquelle de nostre temps est inuente & affermee sans grand labeur.

Sur ce
De Geometrie.

Sar ce propos retirerons la plume, craignant que nostre Geometrique euagation ne soit trop exorbitante & transcendant les metes de nostre intention. Par quoi n’en parlerons plus, & de dire ferons fin.

Huitain au Lecteur.

Si Ptolomee fut des Egyptiens Tant cher tenu pour ses sciences belles, C’est bien raison que reueré des siens (Ami Lecteur) soit Charles de Bouelles. Cosmographie & le cours des estoilles Elegamment Ptolomee descript: Et Bouillus les sciences pareilles En beau Francoys redige par escript.